Advertisement

Mammalian Biology

, Volume 81, Issue 1, pp 10–20 | Cite as

Sex and age-class differences in calls of Siberian wapiti Cervus elaphus sibiricus

  • Ilya A. VolodinEmail author
  • Olga V. Sibiryakova
  • Elena V. Volodina
Original Investigation

Abstract

Stag rutting calls are strongly different among subspecies of red deer Cervus elaphus. Studying sex-, age-and subspecies-related vocal variation may highlight the forces driving the evolution of vocal communication in this species after their expansion from Central Asia to Europe and North America, however, this information was lacking so far for any Asian subspecies of Cervus elaphus. We analysed frequency, temporal and power variables of contact and bugle calls, collected from 63 Siberian wapiti Cervus elaphus sibiricus, the most abundant Asian subspecies of red deer. The open-mouth (oral) and closed-mouth (nasal) contact calls were registered in all sex and age-classes, whereas the open-mouth bugles were found in both stags and hinds but not in the calves. The maximum fundamental frequency (f0max) of contact calls was similar between calves and hinds. Similarly to American subspecies, the small differences of f0 between calls of the young and adults in C. e. sibiricus suggests only a minor ontogenetic decrease of call fundamental frequency compared to European subspecies of red deer. At the same time, the call f0 of all sex and age-classes of C. e. sibiricus was substantially higher compared to those of European subspecies of red deer (C. e. hippelaphus, C. e. corsicanus, C. e. italicus and C. e. hispanicus), although lower than in any studied American subspecies (C. e. roosevelti and C. e. canadensis). These findings provide vocal cues to indicate subspecies of Cervus elaphus, in addition to existing molecular and morphological traits.

Keywords

Acoustic communication Gender differences Developmental pathway Farmed animals Subspecies vocal indices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bocci, A., Telford, M., Laiolo, P., 2013. Determinants of the acoustic behaviour of red deer during breeding in a wild alpine population, and implications for species survey. Ethol. Ecol. Evol. 25, 52–69,  https://doi.org/10.1080/03949370.2012.705331.CrossRefGoogle Scholar
  2. Boersma, P., Weenink, D., 2013. Praat: doing phonetics by computer. Version 5.3.51, Retrieved from: https://doi.org/www.praat.org/ (on 2.6.13).
  3. Bouchet, H., Pellier, A.S., Blois-Heulin, C, Lemasson, A., 2011. Sex differences in the vocal repertoire of adult red-capped mangabeys (Cercocebus torquatus): a multi-level acoustic analysis. Am. J. Primatol. 72, 360–375,  https://doi.org/10.1002/ajp.20791.CrossRefGoogle Scholar
  4. Bowyer, T.R., Kitchen, D.W., 1987. Sex and age-class differences in vocalization of Roosevelt elk during rut. Am. Midl. Nat. 118, 225–235,  https://doi.org/10.2307/2425779.CrossRefGoogle Scholar
  5. Briefer, E.F., 2012. Vocal expression of emotions in mammals: mechanisms of production and evidence. J. Zool. 288, 1–20,  https://doi.org/10.1111/j.1469-7998.2012.00920.x.CrossRefGoogle Scholar
  6. Briefer, E.F., McElligott, A.G., 2011. Indicators of age, body size and sex in goat kid calls revealed using the source-filter theory. Appl. Anim. Behav. Sci. 133, 175–185,  https://doi.org/10.1016/j.applanim.2011.05.012.CrossRefGoogle Scholar
  7. Briefer, E.F., Tettamanti, F., McElligott, A.G., 2015. Emotions in goats: mapping physiological, behavioural and vocal profiles. Anim. Behav. 99, 131–143,  https://doi.org/10.1016/j.anbehav.2014.11.002.CrossRefGoogle Scholar
  8. Charlton, B.D., Reby, D., McComb, K., 2007. Female red deer prefer the roars of larger males. Biol. Lett. 3, 382–385,  https://doi.org/10.1098/rsbl.2007.0244.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Clutton-Brock, T.H., Albon, S.D., 1979. The roaring of red deer and the evolution of honest advertising. Behaviour 69, 145–170,  https://doi.org/10.1163/156853979X00449.CrossRefGoogle Scholar
  10. Della Libera, M., Passilongo, D., Reby, D., 2015. The acoustics of male rutting roars in the endangered population of Mesola red deer Cervus elaphus italicus. Mamm. Biol. 80, 395–400,  https://doi.org/10.1016/j.mambio.2015.05.001.CrossRefGoogle Scholar
  11. Efremova, K.O., Volodin, I.A., Volodina, E.V., Frey, R., Lapshina, E.N., Soldatova, N.V., 2011. Developmental changes of nasal and oral calls in thegoitred gazelle Gazella subgutturosa, a nonhuman mammal with a sexually dimorphic and descended larynx. Naturwissenschaften 98, 919–931,  https://doi.org/10.1007/s00114-011-0843-7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Fant, G., 1960. Acoustic Theory of Speech Production. Mouton & Co., The Hague, Netherlands.Google Scholar
  13. Feighny, J.A., 2005. Ontogeny of wapiti vocalizations: Development, environmental and anatomical constraints. PhD Thesis. University of Northern Colorado, Greeley, Colorado.Google Scholar
  14. Feighny, J.A., Williamson, K.E., Clarke, J.A., 2006. North American elk bugle vocalizations: male and female bugle call structure and context. J. Mammal. 87, 1072–1077,  https://doi.org/10.1644/06-MAMM-A-079R2.1.CrossRefGoogle Scholar
  15. Fitch, W.T., Hauser, M.D., 2002. Unpacking “honesty”: vertebrate vocal production and the evolution of acoustic signals. In: Simmons, A., Fay, R.R., Popper, A.N. (Ed.), Acoustic Communication, Springer Handbook of Auditory Research. Springer, New York, pp. 65–137.Google Scholar
  16. Frey, R., Riede, T., 2013. The anatomy of vocal divergence in North American elk and European red deer. J. Morphol. 274, 307–319,  https://doi.org/10.1002/jmor.20092.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Frey, R., Volodin, I., Volodina, E., Carranza, J., Torres-Porras, J., 2012. Vocal anatomy, tongue protrusion behaviour and the acoustics of rutting roars in free-ranging Iberian red deer stags (Cervus elaphus hispanicus). J. Anat. 220, 271–292,  https://doi.org/10.1111/j.1469-7580.2011.01467.x.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Geist, V., 1998. Deer of the World: Their Evolution, Behavior and Ecology. Stackpole Books, Mechanicsburg, Pennsylvania.Google Scholar
  19. Kidjo, N., Cargnelutti, B., Charlton, B.D., Wilson, C, Reby, D., 2008. Vocal behaviour in the endangered Corsican deer: description and phylogenetic implications. Bioacoustics 18,159-181,  https://doi.org/10.1080/09524622.2008.9753598.CrossRefGoogle Scholar
  20. Kim, Y.H., Lee, J.W., Chae, S., Moon, S.H., Do, E.J., Oh, S.E., Zhang, G.J., Lee, M.Y., 2015. Development of a PCR-based assay to differentiate Cervus elaphus sibiricus from Cervus antlers. J. Korean Soc. Appl. Biol. Chem. 58, 61–66,  https://doi.org/10.1007/s13765-015-0005-2.CrossRefGoogle Scholar
  21. Kuznetsova, M.V., Danilkin, A.A., Kholodova, M.V., 2012. Phylogeography of red deer (Cervus elaphus): analysis of MtDNA cytochrome b polymorphism. Biol. Bull. 39, 323–330,  https://doi.org/10.1134/S1062359012040048.CrossRefGoogle Scholar
  22. Lapshina, E.N., Volodin, I.A., Volodina, E.V., Frey, R., Efremova, K.O., Soldatova, N.V., 2012. The ontogeny of acoustic individuality in the nasal calls of captive goitred gazelles, Gazella subgutturosa. Behav. Process. 90, 323–330,  https://doi.org/10.1016/j.beproc.2012.03.011.CrossRefGoogle Scholar
  23. Lingle, S., Wyman, M.T., Kotrba, R., Teichroeb, L.J., Romanov, C.A., 2012. What makes a cry a cry? A review of infant distress vocalizations. Curr. Zool. 58, 698–726.CrossRefGoogle Scholar
  24. Long, A.M., Moore, N.P., Hayden, T.J., 1998. Vocalizations in red deer (Cervus elaphus), sika deer (Cervus nippon), and red x sika hybrids. J. Zool. Lond. 224, 123–134,  https://doi.org/10.1111/j.1469-7998.1998.tb00014.x.Google Scholar
  25. Ludt, C.J., Schroeder, W., Rottmann, O., Kuehn, R., 2004. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol. Phylogenet. Evol. 31, 1064–1083,  https://doi.org/10.1016/j.ympev.2003.10.003.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Lunitsin, V.G., Borisov, N.P., 2012. Deer Management for Velvet Antlers Production in Russia, second ed. VNIIPO Publishing, Barnaul (in Russian).Google Scholar
  27. Mahmut, H., Masuda, R., Onuma, M., Takahashi, M., Nagata, J., Suzuki, M., Ohtaishi, N., 2002. Molecular phylogeography of the red deer (Cervus elaphus) populations in Xinjiang of China: comparison with other Asian, European, and North American populations. Zool. Sci. 19,485–495,  https://doi.org/10.2108/zsj.19.485.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Manteuffel, G., Puppe, B., Schön, P.C., 2004. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 88,163–182,  https://doi.org/http://dx.doi.org/10.1016/j.applanim.2004.02.012.CrossRefGoogle Scholar
  29. Matrosova, V.A., Volodin, I.A., Volodina, E.V., Babitsky, A.F., 2007. Pups crying bass: vocal adaptation for avoidance of age-dependent predation risk in ground squirrels? Behav. Ecol. Sociobiol. 62, 181–191,  https://doi.org/10.1007/s00265-007-0452-9.CrossRefGoogle Scholar
  30. Meiri, M., Lister, A.M., Higham, T.F.G., Stewart, J.R., Straus, L.G., Obermaier, H., González Morales, M., Marín-Arroyo, A., Barnes, I., 2013. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L). Mol. Ecol. 22, 4711–4722,  https://doi.org/10.1111/mec.12420.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Mukesh, M., Kumar, V.P., Sharma, L.K., Shukla, M., Sathyakumar, S., 2015. Pragmatic perspective on conservation genetics and demographic history of the last surviving population of Kashmir red deer (Cervus elaphus hanglu) in India. PLOS ONE 10 (2), e0117069,  https://doi.org/10.1371/journal.pone.0117069.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Nikol’skii, A.A., 1975. Basic patterns of male Bactrian red deer (Cervus elaphus bactrianus) rutting calls. Zool. Zh. 54, 1897–1900 (in Russian).Google Scholar
  33. Nikol’skii, A.A., 2011. The effect of amplitude modulation on the spectrum structure of the red deer sound signal. Doklady Biol. Sci. 437, 107–109,  https://doi.org/10.1134/S0012496611020086.CrossRefGoogle Scholar
  34. Padilla de la Torre, M., Briefer, E.F., Reader, T., McElligott, A.G., 2015. Acoustic analysis of cattle (Bos taurus) mother-offspring contact calls from a source-filter theory perspective. Appl. Anim. Behav. Sci. 163, 58–68,  https://doi.org/10.1016/j.applanim.2014.11.017.CrossRefGoogle Scholar
  35. Passilongo, D., Reby, D., Carranza, J., Apollonio, M., 2013. Roaring high and low: composition and possible functions of the Iberian stag’s vocal repertoire. PLOS ONE 8, e63841,  https://doi.org/10.1371/journal.pone.0063841.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Reby, D., McComb, K., 2003. Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Anim. Behav. 65, 519–530,  https://doi.org/10.1006/anbe.2003.2078.CrossRefGoogle Scholar
  37. Reby, D., McComb, K., Cargnelutti, B., Darwin, C.J., Fitch, W.T., Clutton-Brock, T.H., 2005. Red deer stags use formants as assessment cues during intra-sexual agonistic interactions. Proc. R. Soc. Lond. B 272, 941–947,  https://doi.org/10.1098/rspb.2004.2954.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Rendall, D., Owren, M.J., Weerts, E., Hienz, R.D., 2004. Sex differences in the acoustic structure of vowellike grunt vocalizations in baboons and their perceptual discrimination by baboon listeners. J. Acoust. Soc. Am. 115, 411–421,  https://doi.org/10.1121/1.1635838.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Richardson, L.W., Jacobson, H.A., Muncy, R.J., Perkins, C.J., 1983. Acoustics of white-tailed deer (Odocoileus virginianus). J. Mammal. 64, 245–252,  https://doi.org/10.2307/1380554.CrossRefGoogle Scholar
  40. Riede, T., Brown, C, 2013. Body size, vocal fold length, and fundamental frequency - implications for mammal vocal communication. Nova Acta Leopold. NF 111, 295–314.Google Scholar
  41. Riede, T., Titze, I.R., 2008. Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) - producing high fundamental frequency vocalization with a very long vocal fold. J. Exp. Biol. 211, 2144–2154,  https://doi.org/10.1242/jeb.017004.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Schneiderová, I., 2014. Vocal repertoire ontogeny of the captive Asian house shrew Suncus murinus suggests that the male courtship call develops from the caravanning call of the young. Acta Theriol. 59, 149–164,  https://doi.org/10.1007/s13364-013-0141-1.CrossRefGoogle Scholar
  43. Sebe, F., Duboscq,J., Aubin, T., Ligout, S., Poindron, P., 2010. Early vocal recognition of mother by lambs: contribution of low- and high-frequency vocalizations. Anim. Behav. 79, 1055–1066,  https://doi.org/10.1016/j.anbehav.2010.01.021.CrossRefGoogle Scholar
  44. Sibiryakova, O.V., Volodin, I.A., Matrosova, V.A., Volodina, E.V., Garcia, A.J., Gallego, L., Landete-Castillejos, T., 2015. The power of oral and nasal calls to discriminate individual mothers and offspring in red deer, Cervus elaphus. Front. Zool. 12 (2), 1–12,  https://doi.org/10.1186/s12983-014-0094-5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Struhsaker, T.T., 1968. Behavior of the elk (Cervus canadensis) during the rut. Z. Tierpsychol. 24, 80–114,  https://doi.org/10.1111/j.1439-0310.1967.tb01229.x.CrossRefGoogle Scholar
  46. Swan, D.C., Hare, J.F., 2008. Signaler and receiver ages do not affect responses to Richardson’s ground squirrel alarm calls. J. Mammal. 89, 889–894,  https://doi.org/10.1644/07-MAMM-A-228.1.CrossRefGoogle Scholar
  47. Taylor, A.M., Reby, D., 2010. The contribution of source-filter theory to mammal vocal communication research. J. Zool. Lond. 280, 221–236,  https://doi.org/10.1111/j.1469-7998.2009.00661.x.CrossRefGoogle Scholar
  48. Teichroeb, L.J., Riede, T., Kotrba, R., Lingle, S., 2013. Fundamental frequency is key to response of female deertojuvenile distress calls. Behav. Process. 92, 15–23,  https://doi.org/10.1016/j.beproc.2012.09.011.CrossRefGoogle Scholar
  49. Vankova, D., Malek, J., 1997. Characteristics of the vocalizations of red deer Cervus elaphus hinds and calves. Bioacoustics 7, 281–289,  https://doi.org/10.1080/09524622.1997.9753340.CrossRefGoogle Scholar
  50. Vankova, D., Bartos, L, Malek, J., 1997. The role of vocalisations in the communication between red deer hinds and calves. Ethology 103, 795–808,  https://doi.org/10.1111/j.1439-0310.1997.tb00121.x.CrossRefGoogle Scholar
  51. Volodin, I.A., Lapshina, E.N., Volodina, E.V., Frey, R., Soldatova, N.V., 2011. Nasal and oral calls in juvenile goitred gazelles (Gazella subgutturosa) and their potential to encode sex and identity. Ethology 117, 294–308,  https://doi.org/10.1111/j.1439-0310.2011.01874.x.CrossRefGoogle Scholar
  52. Volodin, I., Volodina, E., Frey, R., Carranza, J., Torres-Porras, J., 2013a. Spectrographic analysis points to source-filter coupling in rutting roars of Iberian red deer. Acta Ethol. 16, 57–63,  https://doi.org/10.1007/s10211-012-0133-1.CrossRefGoogle Scholar
  53. Volodin, I.A., Volodina, E.V., Frey, R., Maymanakova, I.L., 2013b. Vocal activity and acoustic structure of the rutting calls of Siberian wapiti (Cervus elaphus sibiricus) and their imitation with a hunting luring instrument. Russian J. Theriol. 12, 99–106.CrossRefGoogle Scholar
  54. Volodin, I.A., Sibiryakova, O.V., Kokshunova, L.E., Frey, R., Volodina, E.V., 2014. Nasal and oral calls in mother and young trunk-nosed saiga antelopes, Saiga tatarica. Bioacoustics 23, 79–98,  https://doi.org/10.1080/09524622.2013.826598.CrossRefGoogle Scholar
  55. Volodin, I., Matrosova, V., Volodina, E., Garcia, A.J., Gallego, L., Márquez, R., Llusia, D., Beltrán, J.F., Landete-Castillejos, T., 2015a. Sex and age-class differences in calls of Iberian red deer during rut: reversed sex dimorphism of pitch and contrasting roars from farmed and wild stags. Acta Ethol. 18, 19–29,  https://doi.org/10.1007/s10211-013-0179-8.CrossRefGoogle Scholar
  56. Volodin, I.A., Volodina, E.V., Sibiryakova, O.V., Naidenko, S.V., Hernandez-Blanco, J.A., Litvinov, M.N., Rozhnov, V.V., 2015b. Vocal activity and the acoustic structure of rutting alls in red deer in the Russian Far East. Doklady Biol. Sci. 462, 144–147,  https://doi.org/10.1134/S0012496615030114.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Volodin, I.A., Zaytseva, A.S., Ilchenko, O.G., Volodina, E.V., 2015c. Small mammals ignore common rules: a comparison of vocal repertoires and the acoustics between pup and adult piebald shrews Diplomesodon pulchellum. Ethology 121, 103–115,  https://doi.org/10.1111/eth.12321.CrossRefGoogle Scholar
  58. Volodina, E.V., Matrosova, V.A., Volodin, I.A., 2010. An unusual effect of maturation on the alarm call fundamental frequency in two species of ground squirrels. Bioacoustics 20, 87–98,  https://doi.org/10.1080/09524622.2011.9753634.CrossRefGoogle Scholar
  59. Zachos, F.E., Hartl, G.B., 2011. Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mammal. Rev. 41, 138–150,  https://doi.org/10.1111/j.1365-2907.2010.00177.x.CrossRefGoogle Scholar
  60. Zaytseva, A.S., Volodin, I.A., Mason, M.J., Frey, R., Fritsch, G., Ilchenko, O.G., Volodina, E.V., 2015. Vocal development during postnatal growth and ear morphology in a shrew that generates seismic vibrations, Diplomesodon pulchellum. Behav. Process. 118, 130–141,  https://doi.org/10.1016/j.beproc.2015.06.012.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Ilya A. Volodin
    • 1
    • 2
    Email author
  • Olga V. Sibiryakova
    • 1
  • Elena V. Volodina
    • 2
  1. 1.Department of Vertebrate Zoology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Scientific Research Department, Moscow ZooMoscowRussia

Personalised recommendations