Advertisement

Mammalian Biology

, Volume 80, Issue 6, pp 510–517 | Cite as

Genetic diversity of the swamp rat in South America: Population expansion after transgressive-regressive marine events in the Late Quaternary

  • Fernando M. QuintelaEmail author
  • Gislene L. Gonçalves
  • Fabrício Bertuol
  • Enrique M. González
  • Thales R. O. Freitas
Short Communication

Abstract

We examined the phylogeography of the South American swamp rat Scapteromys tumidus using complete mitochondrial DNA cytochrome b sequences. This species is endemic to the Pampas biome and lives near the coastal plain but also in inland continental areas. The coastal domain of such region experienced a highly dynamic geological history. The inland fraction is part of Precambrian and Mesozoic spills and sedimentary basins, while most of the coastal plain was shaped by transgressive-regressive marine events in the Late Quaternary. As fluctuations in the sea level during this period produced large lateral displacements of the shoreline, originating four barrier-lagoon systems that shaped the present coastline, continental area significantly increased from this time. We hypothesized that the S. tumidus have expanded its range from that period, ramped by its adaptive ability to humid areas. Thus, we examined whether historical Pleistocene events had affected genetic variation of this species along its distributional range. Bayesian phylogenetic analysis and the haplotype network inferred two major genetic clusters along the distribution of S. tumidus. Neutrality tests suggest that populations experienced demographic changes and Bayesian skyline plot evidenced a marked recent demographic expansion pattern, intensified from 350 to 300 kya. Such date coincides with the formation of the lagunar barrier II (dated to ca. 325 kya) and the concurrent initial formation of the coastal plain and increase in continental area.

Keywords

Genetic differentiation Geological evolution Pampas Phylogeography Scapteromys tumidus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allendorf, F.W., Luikart, G.H., 2012. Conservation and the Genetics of Populations, 2nd ed. Wiley-Blackwell, 624 pp.Google Scholar
  2. Bandelt, H.J., Foster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barlow, J.C., 1969. Observations on the biology of rodents in Uruguay. Life Sci. Contrib. R. Ont. Mus. 75, 1–59.Google Scholar
  4. Bossi, J., Navarro, R., 1988. Geología del Uruguay. Universidad de la República, Montevideo.Google Scholar
  5. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.–H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10 (4), e1003537.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carnaval, A.C.O.Q., Hickerson, M.J., Haddad, C.F.B., Rodrigues, M.T., Moritz, C, 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323, 785–789.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Carnaval, A.C., Moritz, C, 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 35, 1187–1201.CrossRefGoogle Scholar
  8. Costa, LP., 2003. The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J. Biogeogr. 30, 71–86.CrossRefGoogle Scholar
  9. Costa, LP., Leite, Y.L, Fonseca, G.A., Fonseca, M.T., 2000. Biogeography of South American forest mammals: endemism and diversity in the Atlantic Forest. Biotropica32, 872–881.CrossRefGoogle Scholar
  10. D’Elía, G., Pardiñas, U.F.J., 2004. Systematics of Argentinean, Paraguayan, and Uruguayan swamp rats of the genus Scapteromys (Rodentia, Cricetidae, Sigmodontinae). J. Mammal. 85, 897–910.CrossRefGoogle Scholar
  11. Doyle, J.J., Doyle, J.L, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.Google Scholar
  12. Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Drummond, A.J., Rambaut, A., Shapiro, B., Pybus, O.G., 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Excoffier, L, Lischer, H.E.L, 2010. Arlequin suite ver3.5: a new series of programs to perform population genetics analysis under Linux and Windows. Mol. Ecol. Resour. 10, 564–567.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Felappi, J.F., Vieira, R.C., Fagundes, N.J.R., Verrastro, L.V., 2015. So faraway, yet so close: strong genetic structure in Homonota uruguayensis (Squamata, Phyllodactylidae), a species with restricted geographic distribution in the Brazilian and Uruguayan Pampas. PLOS ONE 10 (2), e0118162.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fregonezi, J.N., Turchetto, C, Bonatto, S.L, Freitas, L.B., 2013. Biogeographical history and diversification of Petunia and Calibrachoa (Solanaceae) in the Neotropical Pampas grassland. Bot.J. Linn. Soc. 171, 140–153.CrossRefGoogle Scholar
  17. Freitas, T.R.O., Mattevi, M., Oliveira, L.F.B., 1984. Unusual C-band in three karyotypically rearranged forms of Scapteromys (Rodentia, Cricetidae) from Brazil. Cytogenet. Cell Genet. 38, 39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  18. González, E.M., Martinez- Lanfranco, J.A., 2010. Mamíferos de Uruguay. Guía de campo e introducción a su estúdio y conservación. Banda Oriental, Museo Nacional de Historia Natural, Vida Silvestre, Montevideo.Google Scholar
  19. Haffer, J., 1969. Speciation in Amazonian forest birds. Science 165, 131–137.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ho, S.Y.W., Phillips, M.J., 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25,1451–1452.CrossRefGoogle Scholar
  22. Longo, D., Lorenz-Lemke, A.P., Mäder, G., Bonatto, S.L, Freitas, L.B., 2014. The phylogeography of the Petunia integrifolia complex in southern Brazil. Bot.J. Linn. Soc. 174, 199–213.CrossRefGoogle Scholar
  23. Lopes, CM., Ximenes, S.S.F., Gava, A., Freitas, T.R.O., 2013. The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus). Heredity 111, 293–305.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Mäder, G., Fregonezi, J.N., Lorenz-Lemke, A.P., Bonatto, S.L., Freitas, L.B., 2013. Geological and climatic changes in Quaternary shaped the evolutionary history of Calibrachoa heterophylla, an endemic South-Atlantic species of petunia. BMC Evol. Biol. 13, 178.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Mapelli, F.J., Mora, M.S., Mirol, P.M., Kittlein, M.J., 2012. Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conserv. Genet. 13, 165–181.CrossRefGoogle Scholar
  26. Massoia, E., Fornes, A., 1964. Notas sobre el genero Scapteromys (Rodentia–Cricetidae). I. Sistemática, distribución geográfica y rasgos etoecológicos de Scapteromys tumidus (Waterhouse). Physis 24, 279–297.Google Scholar
  27. Matocq, M.D., Patton, J.L., da Silva, M.N.F., 2000. Population genetic structure of two ecologically distinct Amazonian spiny rats: separating history and current ecology. Evolution 54, 1423–1432.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Montes, M.A., Oliveira, L.F.B., Bonatto, S.L, Callegari–Jacques, S., Mattevi, M.S., 2008. DNA sequence analysis and the phylogeographical history of the rodent Deltamys kempi (Sigmodontinae, Cricetidae) on the Atlantic Coastal Plain of south of Brazil. J. Evol. Biol. 21, 1823–1835.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Mora, M.S., Cutrera, A.P., Lessa, E.P., Vassallo, A.I., D’Anatro, A., Mapelli, F.J., 2013. Phylogeography and population genetic structure of the Talas tuco-tuco (Ctenomys talarum): integrating demographic and habitat histories. J. Mammal. 94, 459–476.CrossRefGoogle Scholar
  30. Musser, G.G., Carleton, M.D., 2005. Superfamily Muroidea. In: Wilson, D.E., Reeder, D.M. (Eds.), Mammal Species of the World: ATaxonomic and Geographic Reference. The Johns Hopkins University Press, Baltimore, pp. 894–1531.Google Scholar
  31. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.CrossRefGoogle Scholar
  32. Nicolas, V., Missoup, A., Colyn, M., Cruaud, C, Denys, C, 2012. West-Central African Pleistocene lowland forest evolution revealed by the phylogeography of Misonne’s soft-furred mouse. Afr. Zool. 47, 100–112.Google Scholar
  33. Overbeck, G.E., Müller, S.C., Fedelis, A., Pfadenhauer, J., Pillar, V.D., Blanco, C.C., Boldrini, I.I., Both, R., Forneck, E.D., 2007. Brazil’s neglected biome: the South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 9, 101–116.CrossRefGoogle Scholar
  34. Palma, R.E., Boric-Bargetto, D., Torres-Pérez, F., Hernández, C.E., Yates, T.L., 2012. Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PLoS ONE 7, e32206.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Philipp, R.P., Nardi, LV.S., Bitencourt, M.F., 2000.O Batólito Pelotas no Rio Grande do Sul. In: Holz, M., De Ros, L.F. (Eds.), Geologia do Rio Grande do Sul. CIGO/UFRGS, Porto Alegre, pp. 133–160.Google Scholar
  36. Porto, T.J., Carnaval, A.C., da Rocha, P.L.B., 2013. Evaluating Forest refuges models using species distribution models, model filling and inclusion: a case study with 14 Brazilian species. Divers. Distrib. 19, 330–340.CrossRefGoogle Scholar
  37. Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Quintana, C.A., 2002. Roedores cricétidos del Sanandresense (Pliocenotardío) de la provincia de Buenos Aires Argentina. Mastozool. Neotrop. 9, 263–275.Google Scholar
  39. Quintela, F.M., Goncalves, G.L., Althoff, S.L, Sbalqueiro, I.J., Oliveira, L.F.B., Freitas, T.R.O., 2014. A new species of swamp rat of the genus Scapteromys Waterhouse, 1837 (Rodentia: Sigmodontinae) endemic to Araucaria angustifolia Forest in Southern Brazil. Zootaxa3811, 207–225.CrossRefGoogle Scholar
  40. Rambaut, A., Drummond, A.J., 2007. https://doi.org/beast.bio.ed.ac.ak/Tracer (accessed 03.05.13).
  41. Sérsic, A.N., Cosacov, A., Cocucci, A.A., Johnson, LA., Pozner, R., Avila, L.J., Sites Jr., J.W., Morando, M., 2011. Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol. J. Linn. Soc. 103, 475–494.CrossRefGoogle Scholar
  42. Sierra de Soriano, B., 1969. Algunos caracteres externos de cricetinos y su relación com elgradode adptación a la vida acuática (Rodentia). Physis 28, 471–486.Google Scholar
  43. Silva, M.N.F., Patton, J.L., 1993. Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha). Mol. Phylogenet. Evol. 2, 243–255.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Slatkin, M., 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Smith, M.F., Patton, J.L., 1993. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol. J. Linn. Soc. 50, 149–177.CrossRefGoogle Scholar
  46. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tomazelli, L.J., Villwock, J.A., 1996. Quaternary geological evolution of Rio Grande do Sul Coastal Plain, southern Brazil. An. Acad. Bras. Ciênc. 68, 373–382.Google Scholar
  48. Tomazelli, L.J., Villwock, J.A., 2000.O Cenozóico no Rio Grande do Sul: geologia da Planície Costeira. In: Holz, M., De Ros, L.F. (Eds.), Geologia do Rio Grande do Sul. CIGO/UFRGS, Porto Alegre, pp. 375–406.Google Scholar
  49. Turchetto-Zolet, A.C., Pinheiro, F., Salgueiro, F., Palma–Silva, C, 2013. Phylogeographical patterns shed light on evolutionary process in South America. Mol. Ecol. 22, 1193–1213.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Valdez, L., D’Elía, G., 2013. Differentiation in the Atlantic Forest: phylogeography of Akodon montensis (Rodentia, Sigmodontinae) and the Carnaval-Moritz model of Pleistocene refugia.J. Mammal. 94, 911–922.CrossRefGoogle Scholar
  51. Vanzolini, P.E., Williams, E.E., 1981. The vanishing refuge: a mechanism for ecogeographical speciation. Papéis Avulsos Zool. 34, 251–255.Google Scholar
  52. Ventura, K., Sato-Kuwabara, Y., Fagundes, V., Geise, L., Leite, Y.L.R., Costa, L.P., Silva, M.J.J., Yonenega-Yassuda, Y., Rodrigues, M.T., 2012. Phylogeographic structure and karyotypic diversity of the Brazilian Shrew Mouse (Blarinomys breviceps, Sigmodontinae) in the Atlantic Forest. Cytogenet. Genome Res. 138,19–30.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Ventura, K., Silva, M.J.J., Yonenaga-Yassuda, Y., 2010. Thaptomys Thomas 1915 (Rodentia, Sigmodontini, Akodontini) with karyotypes 2n = 50, FN = 48, and 2n = 52, FN = 52: two monophyletic lineages recovered by molecular phylogeny. Genet. Mol. Biol. 33, 256–261.Google Scholar
  54. Vieira, E.F., 1984. Rio Grande do Sul: Geografia Física e Vegetação. Sagra, Porto Alegre.Google Scholar
  55. Wlasiuk, G., Garza, J.C., Lessa, E.P., 2003. Genetic and geographic differentiation in the Rio Negro tuco-tuco (Ctenomys rionegrensis) inferring the roles of migration and drift from multiple genetic markers. Evolution 57, 913–926.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Fernando M. Quintela
    • 1
    Email author
  • Gislene L. Gonçalves
    • 2
    • 3
  • Fabrício Bertuol
    • 4
  • Enrique M. González
    • 5
  • Thales R. O. Freitas
    • 1
    • 2
  1. 1.Programa de Pós-Graduação em Biologia Animal, Departamento de ZoologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de GenéticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Instituto de Alta Investigación, Universidad de TarapacáAricaChile
  4. 4.Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da AmazôniaManausBrazil
  5. 5.Museo Nacional de Historia NaturalMontevideoUruguay

Personalised recommendations