Mammalian Biology

, Volume 80, Issue 6, pp 447–450 | Cite as

Homology of the chiropteran “dactylopatagium” brevis

  • Lucila I. AmadorEmail author
  • Virginia Abdala
  • Norberto P. Giannini
Short Communication


Bats possess a series of patagial tracts that together act as an aerofoil for powered flight. Here we discuss the homology of a small portion of the patagium, the brevis section, traditionally assigned as a part of the handwing (dactilopatagium). Using dissected specimens and literature references we show that the muscle occipitopollicalis, a morphological marker of the propatagium, extends into the brevis section in a variety of bats. This led us to conclude that the brevis section is in fact a part of the propatagium, which is also supported by developmental evidence.


Bats Wing development Propatagium Homology Musculature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmans, W., 1997. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 5. The genera Ussonycteris Andersen 1912, Myonycteris Matschie, 1899 and Megaloglossus Pagenstecher, 1885; general remarks and conclusions; annex: key to all species. Beaufortia 47 (2), 11–90.Google Scholar
  2. Cretekos, C.J., Weatherbee, S.D., Chen, C.H., et al., 2005. Embryonic staging system for the Short-tailed Fruit Bat Carollia perspicillata, a model organism for the mammalian Order Chiroptera, based upon timed pregnancies in captive-bred animals. Dev. Dyn. 233, 721–738.CrossRefGoogle Scholar
  3. Farnum, C.E., Tinsley, M., Hermanson, J.W., 2008. Forelimb versus hindlimb skeletal development in the big brown bat Eptesicus fuscus: functional divergence is reflected in chondrocytic performance in autopodial growth plates. Cells Tissues Organs 187,35–47.CrossRefGoogle Scholar
  4. Giannini, N.P., 2012. An integrative theory on the origin of bat flight. In: Gunnell, Simmons (Eds.), Evolutionary History of Bats: Fossils Molecules, and Morphology, Chapter 10. Cambridge University Press, pp. 353–384.Google Scholar
  5. Giannini, N.P., Goswami, A., Sánchez-Villagra, M., 2006. Development of integumentary structures in Rousettus amplexicaudatus (Mammalia: Chiroptera: Pteropodidae) during late-embryonic and fetal stages. J. Mammal. 87, 993–1001.CrossRefGoogle Scholar
  6. Giannini, N.P., Simmons, N.B., 2003. A phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes. Cladistics 19 (6), 496–511.CrossRefGoogle Scholar
  7. Giannini, N.P., Simmons, N.B., 2005. Conflict and congruence in a combined DNA-morphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae). Cladistics 21 (5), 411–437.CrossRefGoogle Scholar
  8. Hockman, D., Cretekos, C.J., Mason, M.K., et al., 2008. A second wave of Sonic Hedgehog expression during the development of the bat limb. Proc. Natl. Acad. Sci. U. S. A. 105,16982–16987.CrossRefGoogle Scholar
  9. Hockman, D., Mason, M.K., Jacobs, D.S., Illing, N., 2009. The role of early development in mammalian limb diversification: a descriptive comparison of early limb development between the Natal Long-Fingered Bat (Miniopterus natalensis) and the Mouse (Mus musculus). Dev. Dyn. 238,965–979.CrossRefGoogle Scholar
  10. Jackson, S.M., 1999. Glide angle in the genus Petaurus and a review of gliding in mammals. Mamm. Rev. 30,9–30.CrossRefGoogle Scholar
  11. Kunz, T.H., Pierson, E.D., 1994. Bats of the world: an introduction. In: Nowak, R.M. (Ed.), Walker’s Bats of the World. Johns Hopkins University Press, Baltimore, pp. 1–46.Google Scholar
  12. Meng, J., et al., 2006. A Mesozoic gliding mammal from northeastern China. Nature 444, 889–893.CrossRefGoogle Scholar
  13. Muijres, F.T., Johansson, L.C., Barfield, R., et al., 2008. Leading-edge vortex improves lift in slow-flying bats. Science 319,1250–1253.CrossRefGoogle Scholar
  14. Norberg, U.M., 1972. Functional osteology and myology of the wing of the dog-faced bat Rousettus aegyptiacus (E. Geoffroy) (Mammalia Chiroptera). Zeitschrift für Morphologie und Okologie derTiere 73,1–44.CrossRefGoogle Scholar
  15. Norberg, U.M., Rayner, J.M.V., 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance foraging strategy and echo location. Phil. Trans. R. Soc. Lond. B 316 (1179), 335–427.CrossRefGoogle Scholar
  16. Sears, K.E., 2008. Molecular determinants of bat wing development. Cells Tissues Organs 187, 6–12.CrossRefGoogle Scholar
  17. Sears, K.E., BehringerIV, R.R., Rasweiler, J.J., Niswander, LA., 2006. Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc. Natl. Acad. Sci. U. S. A. 103, 6581–6586.CrossRefGoogle Scholar
  18. Simmons, N.B., 1994. The case for chiropteran monophyly. Am. Mus. Novit. 3103, 1–54.Google Scholar
  19. Teeling, E.C., Springer, M.S., Madsen, O., et al., 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580–584.CrossRefGoogle Scholar
  20. Thewissen, J.G.M., Babcock, S.K., 1992. Distinctive cranial and cervical innervation of wing muscles: new evidence for bat monophyly. Science 251, 934–936.CrossRefGoogle Scholar
  21. Tokita, M., Abe, T., Suzuki, K., 2012. The developmental basis of bat wing muscle. Nat. Commun. 3, 1302.CrossRefGoogle Scholar
  22. Wang, Z., Dai, M., Wang, Y., Cooper, K.L., Zhu, T., Dong, D., Zhang, J., Zhang, S., 2014. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight. Proc. R. Soc. B 281, 20133133.CrossRefGoogle Scholar
  23. Weatherbee, S.D., Behringer, R.R., Rasweiler, J.J., Niswander, L.A., 2006. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc. Natl. Acad. Sci. U. S. A. 103,15103–15107.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Lucila I. Amador
    • 1
    • 2
    Email author
  • Virginia Abdala
    • 1
    • 2
    • 3
  • Norberto P. Giannini
    • 1
    • 2
    • 4
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET)Argentina
  2. 2.Universidad Nacional de Tucumán (UNT), Facultad de Ciencias Naturales e Instituto Miguel LilloSan Miguel de Tucumán, TucumánArgentina
  3. 3.Instituto de Biodiversidad Neotropical, UNT-CONICETArgentina
  4. 4.Department of Mammalogy, Division of Vertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations