Advertisement

Mammalian Biology

, Volume 80, Issue 5, pp 424–430 | Cite as

Interspecific competition mediated by climate change: which interaction between brown and mountain hare in the Alps?

  • Francesco BisiEmail author
  • Lucas A. Wauters
  • Damiano G. Preatoni
  • Adriano Martinoli
Original Investigation

Abstract

CO2 levels and consequently temperatures are expected to increase in the next years. Such quick and drastic changes in climate are likely to affect species distribution. According to future climate scenarios some species will have the possibility to colonise new areas, mainly due to expansion of suitable habitat conditions, whereas other species could be negatively affected due to habitat reduction. In this study, we analysed, in the perspective stated above, the distribution of two hare species: the mountain hare (Lepus timidus) and the brown hare (Lepus europaeus), across Central Italian Alps. Mountain hare on the Alps is a relict species, while brown hare is widespread all over Italy and also across the Alps at lower elevations. We applied future climate scenarios to both hare species to understand how climate change could affect their distribution in the next 70 years. Mountain hare distribution surface area is predicted to decrease in the next few years at its southern edge, but the species should expand its range in northern areas. Interestingly, brown hare distribution seems to be unaffected by climate changes, since no evident “area of substitution” appeared in our simulations. Hence, contrary to one’s expectations based on the two species different niches, while we were able to predict a reduction in mountain hare distribution, our simulations did not show a substitution of the mountain hare by the more generalist brown hare at the southern margins of its distribution.

Keywords

Lepus timidus Lepus europaeus Global warming Alps Conservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo, P., Jiménez-Valverde, A., Melo-Ferreira, J., Real, R., Alves, P.C, 2012. Parapatric species and the implications for climate change studies: a case study on hares in Europe. Glob. Change Biol. 18, 1509–1519.CrossRefGoogle Scholar
  2. Ackerly, D.D., Loarie, S.R., Cornwell, W.K., Weiss, S.B., Hamilton, H., Branciforte, R., Kraft, N.J.B., 2010. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487.CrossRefGoogle Scholar
  3. Amori, G., Contoli, L, Nappi, A., 2008. Mammalia II. Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia. Fauna d’Italia, vol. XLIV. Edizioni Calderini de Il Sole 24 ORE Business Media Srl, Milano.Google Scholar
  4. Anderson, E., Stebbins, G.L., 1954. Hybridization as an evolutionary stimulus. Evolution 8, 378–388.CrossRefGoogle Scholar
  5. Bateman, B.L., VanDerWal, J., Williams, S.E., Johnson, C.N., 2012. Biotic interactions influence the projected distribution of a specialist mammal under climate change. Divers. Distrib. 18, 861–872.CrossRefGoogle Scholar
  6. Bisi, F., (Ph.D. dissertation) 2009. Conservation of Biodiversity in Alps: Mountain Hare (Lepus timidus) as Model System. Insubria University.Google Scholar
  7. Bisi, F., Newey, S., Nodari, M., Wauters, L.A., Harrison, A., Thirgood, S., Martinoli, A., 2011a. The strong and the hungry: bias in capture methods for mountain hares Lepus timidus. Wildl. Biol. 17, 311–316.CrossRefGoogle Scholar
  8. Bisi, F., Nodari, M., Dos Santos Oliveira, N.M., Masseroni, E., Preatoni, D.G., Wauters, LA, Tosi, G., Martinoli, A., 2011b. Space use patterns of mountain hare (Lepus timidus) on the Alps. Eur. J. Wildl. Res. 57, 305–312.CrossRefGoogle Scholar
  9. Bisi, F., Nodari, M., Dos Santos Olivera, N.M., Ossi, F., Masseroni, E., Preatoni, D.G., Wauters, L.A., Martinoli, A., 2013. Habitat selection and activity patterns in Alpine mountain hare (Lepus timidus varronis). Mamm. Biol. 78, 28–33.Google Scholar
  10. Bulgarella, M., Trewick, S.A., Minards, N.A., Jacobson, M.J., Morgan-Richards, M., 2014. Shifting ranges of two tree weta species (Hemideina spp.): competitive exclusion and changing climate. J. Biogeogr. 41, 524–535.CrossRefGoogle Scholar
  11. Caldarelli, E., Meriggi, A., Brangi, A., Vidus-Rosin, A., 2011. Effects of arboriculture stands on European hare Lepus europaeus spring habitat use in an agricultural area of northern Italy. Acta Theriol. 56, 229–238.CrossRefGoogle Scholar
  12. Callaghan, T.V., Bjorn, L.O., Chernov, Y., Chapin, T., Christensen, T.R., Huntley, B., Ims, R., Jolly, D., Jonassons, S., Matveyeva, N., Panikov, N., Oekel, P., Shaver, G., 2005. Tundra and Polar Desert ecosystems. In: ACIA. Arctic Climate Impact Assessment. Cambridge University Press, New York, pp. 24–352.Google Scholar
  13. Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, CD., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026.CrossRefGoogle Scholar
  14. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57.CrossRefGoogle Scholar
  15. Fredsted, T., Wincentz, T., Villesen, P., 2006. Introgression of mountain hare (Lepus timidus) mitochondrial DNA into wild brown hares (Lepus europaeus) in Denmark. BMC Ecol. 6, 17.CrossRefGoogle Scholar
  16. Fourcade, Y., Engler, J.O., Rödder, D., Secondi, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLOS ONE 9, e97122.CrossRefGoogle Scholar
  17. Genini-Gamboni, A.S., Bisi, F., Masseroni, E., Nodali, M., Preatoni, D.G., Wauters, L.A., Martinoli, A., Tosi, G., 2009. Home range dynamics of mountain hare (Lepus timidus) in the Swiss Alps. Hystrix Ital.J. Mammal. 19, 157–163.Google Scholar
  18. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.CrossRefGoogle Scholar
  19. Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., 2013. dismo: Species Distribution Modeling. R Package Version 0.9–3. https://doi.org/CRAN.R-project.orgpackage=dismo(accessed 17.11.14).
  20. Hijmans, R.J., 2014. raster: Geographic Data Analysis and Modelling. R Package Version 2.2–31. https://doi.org/CRAN.R-project.orgpackage=raster(accessed 17.11.14).
  21. Hof, A.R., Jansson, R., Nilsson, C, 2012. Future climate change will favour non-specialist mammals in the (sub)Arctics. PLoS ONE 7 (12), e52574.CrossRefGoogle Scholar
  22. IPCC AR5 WG1, 2013. In: Stocker, T.F., et al. (Eds.), Climate Change (2013) The Physical Science Basis. Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5). Cambridge University Press.Google Scholar
  23. Jansson, G., Thulin, C.G., Pehrson, Å., 2007. Factors related to the occurrence of hybrids between brown hares Lepus europaeus and mountain hares L. timidus in Sweden. Ecography 30, 709–715.CrossRefGoogle Scholar
  24. Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008. Hole filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90m Database. https://doi.org/srtm.csi.cgiar.org(accessed 17.11.14).
  25. Kamienarz, R., Voigt, U., Panek, M., Strauss, E., Nieweglowski, H., 2013. The effect on landscape structure on the distribution of brown hare Lepus europaes in farmlands of Germany and Poland. Acta Theriol. 58, 39–46.CrossRefGoogle Scholar
  26. Martin, Y., Van Dyck, H., Dendoncker, N., Titeux, N., 2013. Testing instead of assuming the importance of land use change scenarios to model species distribution under climate change. Glob. Ecol. Biogeogr. 22, 1204–1216.CrossRefGoogle Scholar
  27. Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralík, V., Zima, J., 1999. The Atlas of European Mammals. Academic Press.Google Scholar
  28. Nodari, M., Masseroni, E., Preatoni, D.G., Wauters, LA., Tosi, G., Martinoli, A., 2006. Live-trapping success of the mountain hare (Lepus timidus) in the southern Italian Alps. Hystrix Ital. J. Mammal. 16, 143–148.Google Scholar
  29. Phillips, S.J., Dudik, M., Schapire, R.E., 2004. A maximum entropy approach to species distribution modeling. In: Proceedings of the Twenty-First International Conference on Machine Learning, pp. 655–662.Google Scholar
  30. Phillips, S.J., Andreson, R.R., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259.CrossRefGoogle Scholar
  31. Phillips, S., 2011. A Brief Tutorial on Maxent, Available at https://doi.org/www.cs.princeton.edu~schapire/maxent/tutorial/tutorial.doc (visited on 03.06.15).
  32. Ramírez-Villegas, J., Cuesta, F., Devenish, C, Peralvo, M., Jarvis, A., Arnillas, C.A., 2014. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 22, 391–404.CrossRefGoogle Scholar
  33. R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.org(accessed 17.11.14).
  34. Rubidge, E.M., Monahan, W.B., Parra, J.L., Cameron, S.E., Brashares, J.S., 2011. The role of climate, habitat, and species co-occurrence as drivers of change in small mammal distributions over the past century. Glob. Change Biol. 17, 696–708.CrossRefGoogle Scholar
  35. Santilli, F., Paci, G., Bagliacca, M., 2014. Winter habitat selection by the European hare (Lepus europaeus) during feeding activity in a farmland area of southern Tuscany (Italy). Hystrix Ital.J. Mammal. 25, 51–53.Google Scholar
  36. Smith, R.K., Jennings, S.H., Harris, S., 2005. A quantitative analysis ofthe abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mamm. Rev. 35, 1–24.CrossRefGoogle Scholar
  37. Thuiller, W., Araújo, M.B., Lavorel, S., 2004. Do we need land-cover data to model species distributions in Europe? J. Biogeogr. 31, 353–361.CrossRefGoogle Scholar
  38. Thulin, C.G., 2003. The distribution of mountain hares Lepus timidus in Europe: a challenge from brown hares L. europaeus? Mamm. Rev. 33, 29–42.CrossRefGoogle Scholar
  39. Thulin, C.G., Stone, J., Tegelström, H., Walker, C.W., 2006. Species assignment and hybrid identification among Scandinavian hares Lepus europaeus and L. timidus. Wildl. Biol. 12, 29–38.CrossRefGoogle Scholar
  40. Urban, M.C., Tewksbury, J.J., Sheldon, K.S., 2012. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. Lond. B: Biol. Sci. 279, 2072–2080.CrossRefGoogle Scholar
  41. VanDerWal, J., Falconi, L., Januchowski, S., Shoo, S., Storlie, C, 2014. SDMTools: Species Distribution Modelling Tools: Tools for Processing Data Associated with Species Distribution Modelling Exercises. R Package Version 1.1–221. https://doi.org/CRAN.R-project.irgpackage=SDMTools (accessed 17.11.14).
  42. Warren, D.L., Glor, R.E., Turelli, M., Funk, D., 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883.CrossRefGoogle Scholar
  43. Worldclim, 2014. https://doi.org/www.worldclim.org (accessed 17.11.14).

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Francesco Bisi
    • 1
    Email author
  • Lucas A. Wauters
    • 1
  • Damiano G. Preatoni
    • 1
  • Adriano Martinoli
    • 1
  1. 1.Environment Analysis and Management Unit, Guido Tosi Research GroupDepartment of Theoretical and Applied Sciences, Insubria UniversityVareseItaly

Personalised recommendations