Advertisement

Mammalian Biology

, Volume 80, Issue 5, pp 390–394 | Cite as

Metabolic rates of three gazelle species (Nanger soemmerringii, Gazella gazella, Gazella spekei) adapted to arid habitats

  • Marie T. Dittmann
  • Christiana Hebel
  • Abdi Arif
  • Michael Kreuzer
  • Marcus ClaussEmail author
Original Investigation

Abstract

The basal metabolic rate of mammals correlates with body mass, but deviations from this regression have been observed and explanations comprise ecological adaptations, reproductive strategies or phylogeny. Certain mammalian groups, adapted to arid environments, show comparatively lower metabolic rates. To expand existing datasets and to investigate metabolic rates in ruminants adapted to arid environments, we conducted respiration measurements with three gazelle species (Gazella spekei, G. gazella and N. soemmerringii, total n = 16). After an adaptation period to a diet of fresh lucerne offered ad libitum, subjects were put separately into respiration boxes for 24 h where they had free access to food and water. Oxygen consumption and carbon dioxide production were measured with a modular system of gas analyzers and pumps. Mean and resting metabolic rate (RMR) were calculated by accounting for the entire measurement phase or the lowest 20 oxygen measurements, respectively. N. soemmerringii had the lowest relative RMR values and the highest respiratory coefficients compared to the other species. Measured values were compared to expected RMR values calculated based on body mass. Gazella spekei and G. gazella showed higher RMR values than expected, while the RMR of N. soemmerringii was in the range of expected values. Our results indicate that not all mammals adapted to aridity have lower metabolic rates under conditions of unlimited resources and that in these cases other physiological adaptations might be of higher importance. Further extensions of the datasets could allow explaining which deviations of metabolic rate from the body mass regressions result from convergent adaptations.

Keywords

Chamber respirometry Metabolism Aridity Bovid Ruminant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AI-Johany, A.M., AI-Toum, M.O., Nader, I.A., 1998. Effect of temperature and water deprivation on body temperature in idmi gazelle (Gazella gazella). Saudi J. Biol. Sci. 5, 24–32.Google Scholar
  2. Al-Toum, M.O., Al-Johany, A.M., 2000. Water deprivation and its effect on some blood constituents in Idmi Gazelle (Gazella gazella). J. Arid Environ. 45, 253–262.CrossRefGoogle Scholar
  3. Babor, H.,Okab,A.B., Samara, E.M., Abdoun, K.A, AL-Tayib, O., Al-Haidary, AA, 2014. Adaptive thermophysiological adjustments of gazelles to survive hot summer conditions. Pakistan J. Zool. 46, 245–252.Google Scholar
  4. Beuchat, CA, 1990. Body size, medullary thickness, and urine concentrating ability in mammals. Am. J. Physiol. 258, R298–R308.PubMedGoogle Scholar
  5. Cain, J.W., Krausman, P.R., Rosenstock, S.S., Turner, J.C., 2006. Mechanisms of thermoregulation and water balance in desert ungulates. Wildl. Soc. Bull. 34, 570–581.CrossRefGoogle Scholar
  6. Careau,V., Morand-Ferron, J., Thomas, D., 2007. Basal metabolic rate of Canidae from hot deserts to cold arctic climates. J. Mammal. 88, 394–400.CrossRefGoogle Scholar
  7. Clauss, M., Hummel, J., Streich, W.J., Südekum, K.H., 2008. Mammalian metabolic rate scaling to 2/3 or 3/4 depends on the presence of gut contents. Evol. Ecol. Res. 10, 153–154.Google Scholar
  8. Clauss, M., Lechner-Doll, M., Streich, W.J., 2004. Differences in the range of faecal dry matter content between feeding types of captive wild ruminants. ActaTheriol. 49, 259–267.Google Scholar
  9. Derno, M., Jentsch, W., Schweigel, M., Kuhla, S., Metges, C.C., Matthes, H.D., 2005. Measurements of heat production for estimation of maintenance energy requirements of Hereford steers. J. Anim. Sci. 83, 2590–2597.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Dittmann, M.T., et al., 2014a. Energy requirements and metabolism of the Phillip’s dikdik (Madoqua saltiana phillipsi). Comp. Biochem. Physiol. A 167, 45–51.CrossRefGoogle Scholar
  11. Dittmann, M.T., Hummel, J., Runge, U, Galeffi, C, Kreuzer, M., Clauss, M., 2014b. Characterising an artiodactyl family inhabiting arid habitats by its metabolism: low metabolism and maintenance requirements in camelids. J. Arid Environ. 107, 41–48.CrossRefGoogle Scholar
  12. Dunson, WA, 1974. Some aspects of salt and water balance of feral goats from arid islands. Am. J. Physiol. 226, 662–669.PubMedCrossRefGoogle Scholar
  13. Fuller, A., Hetem, R.S., Maloney, S.K., Mitchell, D., 2014. Adaptation to heat and water shortage in large, arid-zone mammals. Physiology 29, 159–167.PubMedCrossRefGoogle Scholar
  14. Ghobrial, L.I., 1970. The water relations of the desert antelope (Gazella dorcas dorcas). Physiol. Zool. 43, 249–256.CrossRefGoogle Scholar
  15. Ghobrial, L.I., Cloudsley-Thompson, J.L., 1966. Effect of deprivation of water on the dorcas gazelle. Nature 212, 306.CrossRefGoogle Scholar
  16. Gray, R., McCracken, K.J., 1980. Effect of confinement in a respiration chamber and changes in temperature and plane of nutrition on heat production of 25 kg pigs. J. Agric. Sci. 95, 123–133.CrossRefGoogle Scholar
  17. Haim,A., Skinner, J.D., 1991. A comparative study of metabolic rates and thermoregulation of two African antelopes, the steenbok (Raphicerus campestris) and the blue duiker (Cephalophus monticola). J. Therm. Biol. 16, 145–148.CrossRefGoogle Scholar
  18. Heckel, J.O., Amir, O.G., Kaariye, X.Y., Wilhelmi, F., 2008a. Gazella speke i. The IUCN Red List of Threatened Species Version 20141. https://doi.org/www.iucnredlist.org (downloaded on 08.07.14).
  19. Heckel, J.O., Wilhelmi, F., Kaariye, X.Y., Rayaleh, HA, Amir, O.G., Künzel, T., 2008b. Nanger soemmerringii. The IUCN Red List of Threatened Species Version 20141. https://doi.org/www.iucnredlist.org (downloaded on 08.07.14).
  20. Hetem, R.S., et al., 2012. Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert. J. Comp. Physiol. B 182, 437–449.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Horst, R.L., Langworthy, M., 1971. Observations on the kidney of the desert bighorn sheep. Anat. Rec. 2, 343.Google Scholar
  22. Kamau, J.M.Z., Maina, J.N., Maloiy, G.M.O., 1984. The design and the role of the nasal passages intemperature regulation inthedik-dik antelope (Rhynchotragus krikii) with observations onthe carotid rete. Respir. Physiol. 56, 183–194.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Kleiber, M., 1961. The Fire of Life: An Introduction to Animal Energetics. John Wiley, New York.Google Scholar
  24. Lovegrove, B.G., 2000. The zoogeography of mammalian basal metabolic rate. Am. Nat. 156, 201–219.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Lovegrove, B.G., 2003. The influcence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J. Comp. Physiol. B 173, 87–112.PubMedPubMedCentralGoogle Scholar
  26. Lundy, H., MacLeod, M.G., Jewitt, T.R., 1978. An automated multi-calorimeter system: preliminary experiments on laying hens. Br. Poult. Sci. 19, 173–186.PubMedCrossRefPubMedCentralGoogle Scholar
  27. MacLeod, M.G., Lundy, H., Jewitt, T.R., 1985. Heat production by the mature male turkey (Meleagris gallopavo): preliminary measurements in an automated, indirect, pen-circuit multi-calorimeter system. Br. Poult. Sci. 26, 325–333.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Maloiy, G.M.O., Macfarlane, W.V., Shkolnik, A., 1979. Mammalian herbivores. In: Maloiy, G.M.O. (Ed.), Comparative Physiology of Osmoregulation in Animals. Academic Press, New York, pp. 185–209.Google Scholar
  29. Mauget, C, Mauget, R., Sempéré, A., 1997. Metabolic rate in female European roe deer (Capreolus capreolus): incidence of reproduction. Can. J. Zool. 75, 731–739.CrossRefGoogle Scholar
  30. McNab, B.K., 2008. An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. A 151, 5–28.CrossRefGoogle Scholar
  31. Mendelssohn, H., 1995. Gazella gazella. Mamm. Species 490, 1–7.Google Scholar
  32. Mitchell, G., Lust, A., 2008. The carotid rete and artiodactyl success. Biol. Lett. 4, 415–418.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Mohamed, S.M., Ali, B.H., Hassan, T., 1988. Some effects of water deprivation on dorcas gazelle (Gazella dorcas) in the Sudan. Comp. Biochem. Physiol. A 90, 225–228.PubMedCrossRefGoogle Scholar
  34. Müller, D.W.H., et al., 2012. Dichotomy of eutherian reproduction and metabolism. Oikos 121, 102–115.CrossRefGoogle Scholar
  35. Ostrowski, S., Mésochina, P., Williams, J.B., 2006a. Physiological adjustments of sand gazelles (Gazella subgutturosa) to a boom-or-bust economy: standard fasting metabolic rate, total evaporative water loss, and changes in the sizes of organs during food and water restriction. Physiol. Biochem. Zool. 79, 810–819.PubMedCrossRefGoogle Scholar
  36. Ostrowski, S., Williams, J.B., 2006. Heterothermy of free-living Arabian sand gazelles (Gazella subgutturosa marica) in a desert environment. J. Exp. Biol. 209, 1421–1429.PubMedCrossRefGoogle Scholar
  37. Ostrowski, S., Williams, J.B., Mésochina, P., Sauerwein, H., 2006b. Physiological acclimation of a desert antelope, Arabian oryx (Oryx leucoryx), to long-term food and water restriction. J. Comp. Physiol. B 176, 191–201.CrossRefGoogle Scholar
  38. Picard, K., Thomas, D.W., Festa-Bianchet, M., Belleville, F., Laneville, A., 1999. Differences in the thermal conductance of tropical and temperate bovid horns. Ecoscience 6, 148–158.CrossRefGoogle Scholar
  39. Robbins, C.T., 1993. Wildlife Feeding and Nutrition. Academic Press, San Diego.Google Scholar
  40. Schmidt-Nielsen, K., 1997. Animal Physiology: Adaptation and Environment. Cambridge University Press.Google Scholar
  41. Silanikove, N., 1994. The struggle to maintain hydration and osmoregulation in animals experiencing severe dehydration and rapid rehydration: the story of ruminants. Exp. Physiol. 79, 281–300.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Taylor, C.R., 1970. Strategies of temperature regulation: effect on evaporation in East African ungulates. Am. J. Physiol. 219, 131–135.CrossRefGoogle Scholar
  43. Taylor, C.R., Dmi’el, R., Shkolnik, A., Baharav, D., Borut, A., 1974. Heat balance of running gazelles: strategies for conserving water in the desert. Am. J. Physiol. 226, 439–442.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Taylor, C.R., Lyman, C.P., 1972. Heat storage in running antelopes: independence of brain and body temperatures. Am. J. Physiol. 222, 114–117.PubMedCrossRefPubMedCentralGoogle Scholar
  45. White, C.R., Seymour, R.S., 2003. Mammalian basal metabolic rate is proportional to body mass2/3. PNAS 100, 4046–4049.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Williams, J.B., Ostrowski, S., Bedin, E., Ismail, K., 2001. Seasonal variation in energy expenditure, water flux and food consumption of Arabian oryx (Oryx leucoryx). J. Exp. Biol. 204, 2301–2311.PubMedPubMedCentralGoogle Scholar
  47. Williamson, D.T., Delima, E., 1991. Water intake of Arabian gazelles. J. Arid Environ. 21, 371–378.CrossRefGoogle Scholar
  48. Woodall, P.F., Skinner, J.D., 1993. Dimensions of the intestine, diet and faecal water loss in some African antelope. J. Zool. 229, 457–471.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Marie T. Dittmann
    • 1
    • 2
  • Christiana Hebel
    • 3
  • Abdi Arif
    • 3
  • Michael Kreuzer
    • 2
  • Marcus Clauss
    • 1
    Email author
  1. 1.Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty ZurichUniversity of ZurichSwitzerland
  2. 2.ETH Zurich, Institute for Agricultural SciencesZurichSwitzerland
  3. 3.Al Wabra Wildlife Preservation (AWWP)DohaQatar

Personalised recommendations