Mammalian Biology

, Volume 80, Issue 5, pp 380–384 | Cite as

Communal latrines act as potentially important communication centers in ocelots Leopardus pardalis

  • Torrey W. RodgersEmail author
  • Jacalyn Giacalone
  • Edward J. Heske
  • Natalie C. Pawlikowski
  • Robert L. Schooley
Original Investigation


In solitary carnivores, scent marking is an important form of communication among individuals. We examined the extent of potential communication among ocelots (Leopardus pardalis) at communal latrine sites at the population level. We used a combination of camera-trapping and noninvasive genetics to monitor 18 ocelot latrines in an isolated population on Barro Colorado Island in the Republic of Panama. We found that 72% of monitored ocelot latrines were used by multiple individuals of both sexes, with a mean of 3.0 individuals (range 1–9) per year using each latrine. One highly used latrine was visited by 17 different individuals including 11 males and 6 females over the course of 6 years. Based on visits to the same latrine within 10 days of one another, potential for scent communication among individuals was high. Males had the potential to communicate with a mean of 5.9 other individuals (range 2–14), and females had the potential to communicate with a mean of 4.5 other individuals (range 3–12) at latrines. We conclude that communal latrines are important centers of scent communication for Leopardus pardalis.


Camera-trapping Communication networks Felidae Noninvasive genetics Scent marking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, T.N., 1974. Social-organization in a bobcat population. J. Wildl. Manage. 38, 435–446.CrossRefGoogle Scholar
  2. Broquet, T., Menard, N., Petit, E., 2007. Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv. Genet. 8, 249–260.CrossRefGoogle Scholar
  3. Chaves, P.B., Graeff, V.G., Lion, M.B., Oliveira, L.R., Eizirik, E., 2012. DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol. Ecol. Resour. 12, 18–35.CrossRefGoogle Scholar
  4. Clapham, M., Nevin, O.T., Ramsey, A.D., Rosell, F., 2012. A hypothetico-deductive approach to assessing the social function of chemical signalling in a nonterritorial solitary carnivore. PLoS ONE 7 (4), e35404.CrossRefGoogle Scholar
  5. Darden, S.K., Steffensen, L.K., Dabelsteen, T., 2008. Information transfer among widely spaced individuals: latrines as a basis for communication networks in the swift fox? Anim. Behav. 75, 425–432.CrossRefGoogle Scholar
  6. Di Bitetti, M.S., Paviolo, A., De Angelo, CD., Di Blanco, Y.E., 2008. Local and continental correlates of the abundance of a neotropical cat, the ocelot (Leopardus pardalis). J. Trop. Ecol., 24.Google Scholar
  7. Gorman, M.L., Trowbridge, B.J., 1989. The Role of Odor in the Social Lives of Carnivores. Chapman & Hall/Cornell University Press, London/New York.CrossRefGoogle Scholar
  8. Janecka, J.E., Tewes, M.E., Laack, L.L., Caso, A., Grassman, L.I., Haines, A.M., Shindle, D.B., Davis, B.W., Murphy, W.J., Honeycutt, R.L., 2011. Reduced genetic diversity and isolation of remnant ocelot populations occupying a severely fragmented landscape in southern Texas. Anim. Conserv. 14, 608–619.CrossRefGoogle Scholar
  9. Johnson, W.E., Franklin, W.L., 1991. Feeding and spatial ecology of Felis geoffroyi in southern Patagonia. J. Mammal. 72, 815–820.CrossRefGoogle Scholar
  10. Macdonald, D.W., 1980. Patterns of scent marking with urine and faeces amongst carnivore communities. Symp. Zool. Soc. Lond. 45, 107–139.Google Scholar
  11. Manfredi, C, Soler, L., Lucherini, M., Casanave, E.B., 2006. Home range and habitat use by Geoffroy’s cat (Oncifelis geoffroyi) in a wet grassland in Argentina. J. Zool. 268, 381–387.CrossRefGoogle Scholar
  12. Marnewick, K.A., Bothma, J.D., Verdoorn, G.H., 2006. Using camera-trapping to investigate the use of a tree as a scent-marking post by cheetahs in the Thabazimbi district. South Afr. J. Wildl. Res. 36, 139–145.Google Scholar
  13. Mellen,J.D., 1993. A comparative analysis of scent-marking, social and reproductive behavior in 20 species of small cats (Felis). Am. Zool. 33, 151–166.CrossRefGoogle Scholar
  14. Menotti-Raymond, M., David, V.A., Lyons, LA, Schaffer, A.A., Tomlin, J.F., Hutton, M.K., O’Brien, S.J., 1999. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57, 9–23.CrossRefGoogle Scholar
  15. Molteno, A.J., Sliwa, A., Richardson, P.R.K., 1998. The role of scent marking in a freeranging, female black-footed cat (Felis nigripes). J. Zool. 245, 35–41.CrossRefGoogle Scholar
  16. Moreno, R., Giacalone, J., 2014. Use of video camera-traps to study ocelot (Leopardus pardalis) behavior at latrines. Mesoamericana 18, 55–60.Google Scholar
  17. Moreno, R., Kays, R., Giacalone-Willis, J., Aliaga-Rossel, E., Mares, R., Bustamante, A., 2012. Home range and circadian activity of ocelots (leopardus pardalis) in Barro Colorado Island, Panama. Mesoamericana 16, 30–39.Google Scholar
  18. Muller, C.A., Manser, M.B., 2008. Scent-marking and intrasexual competition in a cooperative carnivore with low reproductive skew. Ethology 114, 174–185.CrossRefGoogle Scholar
  19. Murphy, W.J., Sun, S., Chen, Z.Q., Pecon-Slattery, J., O’Brien, S.J., 1999. Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res. 9, 1223–1230.CrossRefGoogle Scholar
  20. Napolitano, C, Bennett, M., Johnson, W.E., O’Brien, S.J., Marquet, P.A., Barria, I., Poulin, E., Iriarte, A., 2008. Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Mol. Ecol. 17, 678–690.CrossRefGoogle Scholar
  21. Nowell, K., Jackson, P., 1996. Wild Cats: Status Survey and Action Plan. IUCN, Gland, Switzerland.Google Scholar
  22. Palagi, E., Dapporto, L., 2006. Beyond odor discrimination: demonstrating individual recognition by scent in Lemur catta. Chem. Senses 31, 437–443.CrossRefGoogle Scholar
  23. Peakall, R., Smouse, P.E., 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.CrossRefGoogle Scholar
  24. Piñeiro, A., Barja, I., 2015. Evaluating the function of wildcat faecal marks in relation to the defence of favourable hunting areas. Ethol. Ecol. Evol. 27, 161–172.CrossRefGoogle Scholar
  25. Richardson, P.R.K., 1993. The function of scent marking in territories-a resurrection of the intimidation hypothesis. Trans. Roy. Soc. S. Afr. 48, 195–206.CrossRefGoogle Scholar
  26. Rishi, V., 2012. The role of scent marking in the breeding behavior of tiger and other big cats. Indian For. 138, 910–914.Google Scholar
  27. Robinson, I.H., Delibes, M., 1988. The distribution of feces by the Spanish lynx(Felis pardina). J. Zool. 216, 577–582.CrossRefGoogle Scholar
  28. Rodgers, T., Janecka, J., 2013. Applications and techniques for non-invasive faecal genetics research in felid conservation. Eur. J. Wildl. Res. 59, 1–16.CrossRefGoogle Scholar
  29. Rodgers, T.W., Giacalone, J., Heske, E.J., Janečka, J.E., Phillips, C.A., Jansen, P.A., Schooley, R.L., 2015. Socio-spatial organization and kin structure in ocelots from integration of camera trapping and noninvasive genetics. J. Mammal. 96, 120–128.CrossRefGoogle Scholar
  30. Rodgers, T.W., Giacalone, J., Heske, E.J., Janečka, J.E., Phillips, C.A., Schooley, R.L., 2014. Comparison of noninvasive genetics and camera trapping for estimating population density of ocelots (Leopardus pardalis) on Barro Colorado Island, Panama. Trop. Conserv. Sci. 7, 690–705.CrossRefGoogle Scholar
  31. Soler, L., Lucherini, M., Manfredi, C., Ciuccio, M., Casanave, E.B., 2009. Characteristics of defecation sites of the geoffroy’s cat Leopardus geoffroyi. Mastozoologia Neotrop. 16, 485–489.Google Scholar
  32. Taberlet, P., Fumagalli, L., 1996. Owl pellets as a source of DNA for genetic studies of small mammals. Mol. Ecol. 5, 301–305.CrossRefGoogle Scholar
  33. Taberlet, P., Waits, L.P., Luikart, G., 1999. Noninvasive genetic sampling: look before you leap. Trends Ecol. Evol. 14, 323–327.CrossRefGoogle Scholar
  34. Thom, M.D., Hurst, J.L., 2004. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787.Google Scholar
  35. Trolle, M., Kery, M., 2003. Estimation of ocelot density in the pantanal using capturerecapture analysis of camera-trapping data. J. Mammal. 84, 607–614.CrossRefGoogle Scholar
  36. Vogt, K., Zimmermann, F., Kolliker, M., Breitenmoser, U., 2014. Scent-marking behaviour and social dynamics in a wild population of Eurasian lynx Lynx lynx. Behav. Processes 106, 98–106.CrossRefGoogle Scholar
  37. Waits, L.P., Luikart, G., Taberlet, P., 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10, 249–256.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Torrey W. Rodgers
    • 1
    • 2
    Email author
  • Jacalyn Giacalone
    • 2
    • 3
  • Edward J. Heske
    • 1
    • 4
  • Natalie C. Pawlikowski
    • 5
  • Robert L. Schooley
    • 6
  1. 1.Department of Animal BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Smithsonian Tropical Research InstituteBalboa, AnconPanama
  3. 3.Montclair State UniversityMontclairUSA
  4. 4.Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignUSA
  5. 5.School of Integrative BiologyUniversity of IllinoisUrbanaUSA
  6. 6.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations