Advertisement

Mammalian Biology

, Volume 80, Issue 4, pp 312–315 | Cite as

No short-term effect of handling and capture stress on immune responses of bats assessed by bacterial killing assay

  • Sara StrobelEmail author
  • Nina I. Becker
  • Jorge A. Encarnação
Short Communication

Abstract

Ecoimmunology of wild animals becomes increasingly important. However, there are methodical limitations, especially when working on small mammals, e.g. small sample volume and acute stress associated with capture, handling and sampling that can influence immune parameters. The plasma bacterial killing assay measures innate humoral immune responses, mainly complement activity. It is a powerful tool with many methodical advantages. To avoid investigation of artefacts in future ecoimmunological studies the influence of acute stress on the bacterial killing activity was assessed.

Bats (Nyctalus noctula, n = 9) were repeatedly sampled in three time intervals up to 97 min after capture. Bacterial killing activity against Escherichia coli was measured using a microplate absorbance reader. Bacterial killing activity was not influenced by capture, handling and sampling. Hence, released stress hormones did not affect circulating complement activity. To conclude, the plasma bacterial killing assay is reliable and efficient ecoimmunological tool in wildlife studies even of small mammals.

Keywords

Acute stress Bacterial killing assay Constitutive immunity Innate immune system Chiroptera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boughton, R.K.,Joop, G., Armitage, SAO., 2011. Outdoor immunology: methodological considerations for ecologists. Funct. Ecol. 25, 81–100.CrossRefGoogle Scholar
  2. Buehler, D.M., Bhola, N., Barjaktarov, D., Goymann, W., Schwabl, I., Tieleman, B.I., Piersma, T., 2008. Constitutive immune function responds more slowly to handling stress than corticosterone in a shorebird. Physiol. Biochem. Zool. 81, 673–681.CrossRefGoogle Scholar
  3. Csorba, G., Bates, P., Stubbe, M., Hutson, A.M., Aulagnier, S., Spitzenberger, F., 2008. Nyctalus noctula. The IUCN Red List of Threatened Species. Version 2014.2. http:// www.iucnredlist.org (accessed 14.10.14).Google Scholar
  4. Demas, G.E., Nelson, R.J., 2012. Introduction to ecoimmunology. In: Demas, G.E., Nelson, R.J. (Eds.), Ecoimmunology. Oxford University Press, New York, pp. 3–7.Google Scholar
  5. Derting, T.L., Compton, S., 2003. Immune response, not immune maintenance, is energetically costly in wild white-footed mice (Peromyscus leucopus). Physiol. Biochem. Zool. 76, 744–752.CrossRefGoogle Scholar
  6. Dhabhar, F.S., 2002. A hassle a day may keep the doctor away: stress and the augmentation of immune function. Integr. Comp. Biol. 42, 556–564.CrossRefGoogle Scholar
  7. Dietz, C, Nill, D., von Helversen, O., 2009. Bats of Britain, Europe and Northwest Africa. A & C Black, London.Google Scholar
  8. Encarnacão, J.A., Dietz, M., Kierdorf, U., 2004. Reproductive condition and activity pattern of male Daubenton’s bats (Myotis daubentonii) in the summer habitat. Mamm. Biol. 69, 163–172.CrossRefGoogle Scholar
  9. French, S.S., Neuman-Lee, L.A., 2012. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open 1, 482–487.CrossRefGoogle Scholar
  10. Grandin, T., 1997. Assessment of stress during handling and transport. J. Anim. Sci. 75, 249–257.CrossRefGoogle Scholar
  11. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M., 2001. Immunobiology: The Immune System in Health and Disease, 5th ed. Garland Science, New York.Google Scholar
  12. Keusch, G.T., Douglas, S.D., Ugurbil, K., 1975. Intracellular bactericidal activity of leukocytes in whole blood for the diagnosis of chronic granulomatous disease of childhood. J. Infect. Dis. 131, 584–587.CrossRefGoogle Scholar
  13. Korte, S.M., Koolhaas, J.M., Wingfield, J.C., McEwen, B.S., 2004. The Darwinian concept of stress: benefits ofallostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 29, 3–38.CrossRefGoogle Scholar
  14. Kurth,A., Kohl, C, Brinkmann, A., Ebinger, A., Harper, J.A., Wang, L.F., Mühldorfer, K., Wibbelt, G., 2012. Novel paramyxoviruses in free-ranging European bats. PLoS ONE 7, e38688.CrossRefGoogle Scholar
  15. Lee, K.A., 2006. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015.CrossRefGoogle Scholar
  16. Liebl, A.L., Martin, L.B., 2009. Simple quantification of blood and plasma antimicrobial capacity using spectrophotometry. Funct. Ecol. 23, 1091–1096.CrossRefGoogle Scholar
  17. Lochmiller, R.L., Deerenberg, C, 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98.CrossRefGoogle Scholar
  18. Luis, A.D., Hayman, D.T.S., O’Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R.C., Mills, J.N., Timonin, M.E., Willis, C.K.R., Cunningham, A.A., 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. R. Soc. Biol. Sci. Ser. B 280, 20122753.CrossRefGoogle Scholar
  19. Martin, L.B., 2009. Stress and immunity in wild vertebrates: timing is everything. Gen. Comp. Endocrinol. 163, 70–76.CrossRefGoogle Scholar
  20. Matson, K.D., Cohen, A.A., Klasing, K.C., Ricklefs, R.E.,Scheuerlein,A., 2006. No simple answers for ecological immunology: relationships among immune indices at the individual level break down at the species level in waterfowl. Proc. R. Soc. Lond. B: Biol. Sci. 273, 815–822.CrossRefGoogle Scholar
  21. Merchant, M.E., Roche, C, Elsey, R.M., Prudhomme, J., 2003. Antibacterial properties of serum from the American alligator (Alligator mississippiensis). Comp. Biochem. Physiol. Biochem. Mol. Biol. 136, 505–513.CrossRefGoogle Scholar
  22. Millet, S., Bennett, J., Lee, K.A., Hau, M., Klasing, K.C., 2007. Quantifying and comparing constitutive immunity across avian species. Dev. Comp. Immunol. 31, 188–201.CrossRefGoogle Scholar
  23. Pilosof, S., Korine, C, Moore, M.S., Krasnov, B.R., 2014. Effects of sewage-water contamination on the immune response of a desert bat. Mamm. Biol. 79, 183–188.CrossRefGoogle Scholar
  24. Racey, P.A., 1974. The reproductive cycle in male noctule bats, Nyctalus noctula. J. Reprod. Fertil. 41, 169–182.CrossRefGoogle Scholar
  25. Reeder, D.M., Kosteczko, N.S., Kunz, T.H., Widmaier, E.P., 2004. Changes in baseline and stress-induced glucocorticoid levels during the active period in free-ranging male and female Little Brown Myotis, Myotis lucifugus (Chiroptera: Vespertilion-idae). Gen. Comp. Endocrinol. 136, 260–269.CrossRefGoogle Scholar
  26. Reusken, C.B.E.M., Lina, P.H.C., Pielaat, A., de Vries, A., Dam-Deisz, C, Adema, J., Drexler, J.F., Drosten, C, Kooi, E.A., 2010. Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe. Vector Borne Zoonot. Dis. 10, 785–791.CrossRefGoogle Scholar
  27. Ricklin, D., Hajishengallis, G., Yang, K., Lambris, J.D., 2010. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797.CrossRefGoogle Scholar
  28. Romero, L.M., Reed, J.M., 2005. Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 140, 73–79.Google Scholar
  29. Sapolsky, R.M., Romero, L.M., Munck, A.U., 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89.Google Scholar
  30. Segerstrom, S.C., 2007. Stress, energy, and immunity: an ecological view. Curr. Dir. Psychol. Sci. 16, 326–330.CrossRefGoogle Scholar
  31. Wibbelt, G., Kurth, A., Yasmum, N., Bannert, M., Nagel, S., Nitsche, A., Ehlers, B., 2007. Discovery of herpesviruses in bats. J. Gen. Virol. 88, 2651–2655.CrossRefGoogle Scholar
  32. Widmaier, E.P., Harmer, T.L., Sulak, A.M., Kunz, T.H., 1994. Further characterization of the pituitary-adrenocortical responses to stress in Chiroptera. J. Exp. Zool. 269, 442–449.CrossRefGoogle Scholar
  33. Widmaier, E.P., Kunz, T.H., 1993. Basal, diurnal, and stress-induced levels of glucose and glucocorticoids in captive bats. J. Exp. Zool. 265, 533–540.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Sara Strobel
    • 1
    Email author
  • Nina I. Becker
    • 1
  • Jorge A. Encarnação
    • 1
  1. 1.Mammalian Ecology Group, Department of Animal Ecology and SystematicsJustus-Liebig-University of GiessenGiessenGermany

Personalised recommendations