Mammalian Biology

, Volume 79, Issue 5, pp 297–305 | Cite as

Location of a contact zone between Mus musculus domesticus and M. m. domesticus with M. m. castaneus mtDNA in southern New Zealand

  • Helen McCormick
  • Ray Cursons
  • Richard J. Wilkins
  • Carolyn M KingEmail author
Original Investigation


The house mouse, Mus musculus, was first introduced into New Zealand in significant numbers in the early to mid nineteenth century, with genomic components from different sources of the three subspecies M. m. domesticus, M. m. musculus and M. m. castaneus. M. m. domesticus is now widely distributed in New Zealand, with genomic and morphological evidence of M. m. musculus in a few scattered locations. M. m. domesticus/M. m. castaneus hybrids are dominant in the southern third of the South Island. We anticipated that there should be a definable southern contact zone between pure M. m. domesticus and M. m. domesticus/M. m. castaneus hybrids. We tested this hypothesis by screening 170 DNA samples from mice collected in the southern South Island, using a PCR technique which rapidly distinguishes the mitochondrial genomes of the three subspecies.

All mice sampled from in or north of Lincoln (43.63° S) had only M. m. domesticus mtDNA, whereas all those from or further south than Hook (44.68° S) had M. m. castaneus mtDNA Between the two sites, mice carrying mtDNA of both subspecies were found, sometimes in the same building. On present data, this contact zone extends approximately 50 km north to south and some 30 km inland. Classical tests with three nuclear DNA markers confirmed earlier work showing that the nuclear genomes of all mice appeared to be predominantly domesticus-like.

We conclude that if purebred M. m. castaneus mice did originally reach New Zealand, extensive back-crossing with M. m. domesticus has made the castaneus nuclear genome virtually undetectable with the tests that we employ.


Mus musculus domesticus M. m. castaneus Hybridisation Invasive species New Zealand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balloux, F.O., Handley, L.-J.L, Jombart, T., Liu, H., Manica, A., 2009. Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc. R. Soc. B 276, 3447–3455.CrossRefGoogle Scholar
  2. Begg, A.C., Begg, N.C., 1973. Port Preservation. Whitcombe & Tombs, Christchurch. Berry, R.J., Scriven, P.N., 2005. The house mouse: a model and motor for evolutionary understanding. Biol. J. Linn. Soc. 84, 335–347.Google Scholar
  3. Boissinot, S., Boursot, P., 1997. Discordant phylogeographic patterns between the Y chromosome and mitochondrial DNA in the house mouse: selection on the Y chromosome? Genetics 146,1019-1034.Google Scholar
  4. Bonhomme, F., Searle, J.B., 2012. House mouse phylogeography. In: Macholán, M., et al. (Eds.), Evolution of the House Mouse. Cambridge University Press, Cambridge, pp. 278–296.CrossRefGoogle Scholar
  5. Boursot, P., Auffray, J.-C, Britton-Davidson, J., Bonhomme, F., 1993. The evolution of house mice. Annu. Rev. Ecol. Syst. 24,119-152.CrossRefGoogle Scholar
  6. Bozikova, E.V.A., Munclinger, P., Teeter, K.C., Tucker, P.K., Macholán, M., Piálek, J., 2005. Mitochondrial DNA in the hybrid zone between Mus musculus musculus and Mus musculus domesticus: a comparison of two transects. Biol. J. Linn. Soc. 84, 363–378.CrossRefGoogle Scholar
  7. Del Punta, K., Rothman, A., Rodriguez, I., Mombaerts, P., 2000. Sequence diversity and genomic organization of vomeronasal receptor genes in the mouse. Genome Res. 10, 1958–1967.CrossRefGoogle Scholar
  8. Gabriel, S.I., Stevens, M.I., da Luz Mathias, M., Searle, J.B., 2011. Of mice and ‘convicts’: origin of the Australian house mouse, Mus musculus. PLoS ONE 6 (12), 1–6.Google Scholar
  9. Gunduz, I., Tez, C, Malikov, V., Vazir, A., Polyakov, A.V., Searle, J.B., 2000. Mitochondrial DNA and chromosomal studies of wild mice (Mus) from Turkey and Iran. Heredity 84, 458–467.CrossRefGoogle Scholar
  10. Hammer, M.F., Wilson, A.C., 1987. Regulatory and structural genes for lysozymes of mice. Genetics 115, 521–533.PubMedPubMedCentralGoogle Scholar
  11. Jones, C.S., Noble, L.R., Jones, J.S., Tegelstrom, H., Triggs, G.S., Berry, R.J., 1995. Differential male genetic success determines gene flow in an experimentally manipulated mouse population. Proc. R. Soc. B 260, 251–256.CrossRefGoogle Scholar
  12. Jones, E.P., Eager, H.M., Gabriel, S.I., Jóhannesdóttir, F., Searle, J.B., 2013. Genetic tracking of mice and other bioproxies to infer human history. Trends Genet. 29, 298–308, Scholar
  13. Jones, E.P., Jensen, J.K., Magnussen, E., Gregersen, N., Hansen, H.S., Searle, J.B., 2011. A molecular characterization of the charismatic Faroe house mouse. Biol. J. Linn. Soc. 102, 471–482, Scholar
  14. King, M., 2003. The Penguin History of New Zealand. Penguin Books, Auckland.Google Scholar
  15. Laukaitis, C, Heger, A., Blakley, T., Munclinger, P., Ponting, C, Karn, R., 2008. Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals. BMC Evol. Biol. 8,46.CrossRefGoogle Scholar
  16. Macholán, M., Baird, S.J.E., Dufková, P., Munclinger, P., Bímová, B.V., Piálek, J., 2011. Assessing multilocus introgression patterns: a case study on the mouse X chromosome in central Europe. Evolution 65, 1428–1446.CrossRefGoogle Scholar
  17. McCormick, H.M., Wilkins, R.J., 2010. Rapid, large-scale and inexpensive genotype differentiation of Mus musculus castaneus and domesticus sub-species. Mol. Ecol. Res. 10 (1), 218–221.CrossRefGoogle Scholar
  18. Mudge, J., Armstrong, S., McLaren, K., Beynon, R., Hurst, J., Nicholson, C, 2008. Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol. 9, R91.CrossRefGoogle Scholar
  19. Munclinger, P., Boursot, P., Dod, B., 2003. B1 insertions as easy markers for mouse population studies. Mamm. Genome 14, 359–366.CrossRefGoogle Scholar
  20. Munclinger, P., Bozikova, E., Sugerkova, M., 2002. Genetic variation in house mice (Mus, Muridae, Rodentia) from the Czech and Slovak Republics. Folia Zool. 51, 81–92.Google Scholar
  21. Nachman, M.W., Boyer, S.N., Searle, J.B., Aquadro, C.F., 1994. Mitochondrial DNA variation and the evolution of robertsonian chromosomal races of house mice, Mus domesticus. Genetics 136, 1105–1120.PubMedPubMedCentralGoogle Scholar
  22. Nagamine, CM., Nishioka, Y., Moriwaki, K., Boursot, P., Bonhomme, F., Lau, Y.F.C., 1992. The musculus-type Y chromosome of the laboratory mouse is of Asian origin. Mamm. Genome 3, 84–91.CrossRefGoogle Scholar
  23. Orth, A., Adama, T., Din, W., Bonhomme, F., 1998. Natural hybridization of two subspecies of house mice, Musculus domesticus and Mus musculus castaneus, near Lake Casitas (California). Genome 41 (1), 104–110.CrossRefGoogle Scholar
  24. Panithanarak, T., Hauffe, H.C., Dallas, J.F., Glover, A., Ward, R.G., Searle, J.B., 2004. Linkage-dependent gene flow in a house mouse chromosomal hybrid zone. Evolution 58, 184–192.CrossRefGoogle Scholar
  25. Prager, E.M., Sage, R.D., Gyllensten, U., Thomas, W., Hubner, R., Jones, C.S., Noble, L., Searle, J.B., Wilson, A.C., 1993. Mitochondrial DNA sequence diversity and the colonization of Scandinavia by house mice from East Holstein. Biol. J. Linn. Soc. 50, 85–122.CrossRefGoogle Scholar
  26. Rajabi-Maham, H., Orth, A., Siahsarvie, R., Boursot, P., Darvish, J., Bonhomme, F., 2012. The south-eastern house mouse Mus musculus castaneus (Rodentia: Muridae) is a polytypic subspecies. Biol. J. Linn. Soc. 107, 295–306, Scholar
  27. Richards, R., 2010. Sealing in the Southern Oceans. Paremata Press, Wellington, pp. 1788–1833.Google Scholar
  28. Ross, J.O.C, 1987. William Stewart: Sealing Captain, Trader and Speculator. Roebuck Society, Canberra.Google Scholar
  29. Schottenhammer, A., 2007. The East Asian Maritime World 1400–1800: Its Fabrics of Power and Dynamics of Exchanges. East Asian economic and Socio-cultural Studies, vol. 4. Otto Harrassowitz Verlag, Wiesbaden.Google Scholar
  30. Searle, J.B., Jamieson, P.M., Gunduz, I., Stevens, M.I., Jones, E.P., Gemmill, E.C., King, CM., 2009a. The diverse origins of New Zealand house mice. Proc. R. Soc. B 276, 209–217.CrossRefGoogle Scholar
  31. Searle, J.B., Jones, C.S., Gunduz, I., Scascitelli, M., Jones, E.P., Herman, J.S., Rambau, R.V., Noble, L.R., Berry, R.J., Giménez, M.D., Jóhannesdóttir, F., 2009b. Of mice and (Viking?) men: phylogeography of British and Irish house mice. Proc. R. Soc. B 276, 201–207.CrossRefGoogle Scholar
  32. Steadman, D.W., 2006. Extinction and Biogeography of Tropical Pacific Birds. University of Chicago Press, Chicago.Google Scholar
  33. Teeter, K.C., Payseur, B.A., Harris, L.W., Bakewell, M.A., Thibodeau, L.M., O’Brien, J.E., et al., 2008. Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res. 18, 67–76.CrossRefGoogle Scholar
  34. Terashima, M., Furusawa, S., Hanzawa, N., Tsuchiya, K., Suyanto, A., Moriwaki, K., et al., 2006. Phylogeographic origin of Hokkaido house mice (Mus musculus) as indicated by genetic markers with maternal, paternal and biparental inheritance. Heredity 96, 128–138.CrossRefGoogle Scholar
  35. Thomson, G.M., 1922. The Naturalisation of Animals and Plants in New Zealand. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  36. White, M.A., Stubbings, M., Dumont, B.L., Payseur, B.A., 2012. Genetics and evolution of hybrid male sterility in house mice. Genetics 191, 917–934.CrossRefGoogle Scholar
  37. White, T., 1890. On rats and mice. Trans. Proc. N. Z. Inst. 23, 194–201.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Helen McCormick
    • 1
  • Ray Cursons
    • 1
  • Richard J. Wilkins
    • 1
  • Carolyn M King
    • 1
    Email author
  1. 1.Centre for Ecology and Biodiversity ResearchUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations