Advertisement

Mammalian Biology

, Volume 79, Issue 4, pp 277–282 | Cite as

Genetic diversity and structuring of the grey wolf population from the Central Balkans based on mitochondrial DNA variation

  • Mihajla DjanEmail author
  • Vladimir Maletic
  • Igor Trbojević
  • Dunja Popović
  • Nevena Velićković
  • Jelena Burazerović
  • Duško Ćirović
Short Communication

Abstract

The Dinaric-Balkan grey wolf population used to be at a border between the large remaining Eastern European populations and the largely eradicated Western European populations. During the last few decades we have witnessed the Western European wolf population recovery. Substantial genetic variation has previously been reported in the Balkan wolf population, but rigorous genetic characterization has not been done for its central parts. The aims of this research were to determine genetic diversity based on mtDNA sequence variability, to infer possible population structuring, to find genetic signals of population expansions or bottlenecks and to evaluate phylogenetic position of the grey wolf population from the Central Balkans. Six haplotypes were detected, of which three have only been found in the Balkan region. These haplotypes belong to both haplogroups previously determined in Europe. Based on our mtDNA sequence analyses, the Dinaric-Balkan wolf population is vertically differentiated into “western” (Croatia/Bosnia and Herzegovina) and “eastern” (Serbia/Macedonia) subpopulations. None of the results support assumption of population expansion. Instead, significantly positive values for Tajima’s D and Fu’s Fs may suggest recent population bottleneck. Obtained data may be helpful in observation to which extent gene pool from the Balkans contribute to newly founded populations in Western Europe.

Keywords

Grey wolf Balkans mtDNA Population structuring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H-J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol. 16, 37–48.CrossRefGoogle Scholar
  2. Boitani, L, 1992. Wolf research and conservation in Italy, Biol.Conserv. 60, 125–132.CrossRefGoogle Scholar
  3. Boitani, L, 2000. Action Plan for the conservation of the wolves (Canis lupus) in Europe. Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention). Nature and environment, No. 113. Council of Europe Publishing, Strasbourg.Google Scholar
  4. Delibes, M., 1990. Status and conservation needs of the wolf (Canis lupus) in the Council of Europe memberstates. Nature and Environment Series, No. 47. Council of Europe, Strasbourg, France.Google Scholar
  5. Ellegren, H., Savolainen, P., Rosen, B., 1996. The genetical history of an isolated population of the endangered grey wolf Canis lupus: a study of nuclear and mitochondrial polymorphisms, Philos. Trans. R. Soc. B 351, 1661–1669.CrossRefGoogle Scholar
  6. Excoffier, L, Lischer, H.E.L., 2010. Arlequin suite ver3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour. 10, 564–567.CrossRefGoogle Scholar
  7. Fabbri, E., Caniglia, R., Kusak, J., Galov, T., Gomerčić , T., Arbanasić , H., Huber, D., Randi, E., 2013. Genetic structure of expanding wolf (Canis lupus) populations in Italy and Croatia, and the early steps of the recolonization of the Eastern Alps. Mamm. Biol., http://dx.doi.org/10.1016/j.mambio.2013.10.002.Google Scholar
  8. Fu, Y., 1997. Statistical tests of neutrality of mutations against population growth, hitch-hiking, and background selection, Genetics 147, 915–925.PubMedPubMedCentralGoogle Scholar
  9. Gomeričić , T., Sindičić, M., Galov, A., Arbanasić, H., Kusak, J., Kocijan, I., Duras Gomerčić, M., Huber, D., 2010. High genetic variability of the grey wolf (Canis lupus L.) population from Croatia as revealed by mitochondrial DNA control region sequences, Zool. Stud. 49 (6), 816–823.Google Scholar
  10. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT, Nucleic Acids Symp. Ser. 41, 95–98.Google Scholar
  11. Hausknecht, R., Szabó, Á., Firmánszky, G., Gula, R., Kuehn, R., 2010. Confirmation of wolf residence in Nothern Hungary by field and genetic monitoring, Mamm. Biol. 75, 348–352.CrossRefGoogle Scholar
  12. Hindrikson, M., Remm, J., Männil, P., Ozolins, J., Tammeleht, E., Saarma, U, 2013. Spatial genetic analyses reveal cryptic population structure and migration patterns in a continuously harvested Grey Wolf (Canis lupus) population in North-Eastern Europe. Plos ONE 8 (9), e75765.CrossRefGoogle Scholar
  13. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  14. Kusak, J., Huber, D., 2008. Dinamika, brojnost i trend populacije vuka od 1992. do 2008.godine. In: štrbenac, A (Ed.), Planupravljanja vukom u Republici Hrvatskoj. DZZP, Zagreb, pp. 21–23.Google Scholar
  15. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  16. Lucchini, V., Galov, A., Randi, E., 2004. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines, Mol. Ecol. 13, 523–536.CrossRefGoogle Scholar
  17. Milenković, M., (Ph.D. thesis) 1997. Taxonomic-biogeographic status and ecological/economical significance of the wolf (Canis lupus Linnaeus 1758) in Yugoslavia. University of Belgrade, Serbia.Google Scholar
  18. Milenković, M., Paunović, M., Ćirović, D., 2007. Action plan for wolf Canis lupus L, 1758 conservation in Serbia. Phase I - strategic plan. Institute for Biological Research Sinisa Stankovic, Belgrade, Ministry of Environmental Protection Republic of Serbia. Project report.Google Scholar
  19. Moura, A.E., Tsingarska, E., Dabrowski, M.J., Czarnomska, S.D., Jedrzejewska, B., Pilot, M., 2013. Unregulated hunting and genetic recovery from a severe population decline: the cautionary case of Bulgarian wolves. Conserv. Genet, http://dx.doi.org/10.1007/s10592-013-0547-y.Google Scholar
  20. Palomares, F., Godoy, J.A., Piriz, A., O’Brien, S.J., Johnson, W.E., 2002. Fecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx, Mol. Ecol. 11, 2171–2182.CrossRefGoogle Scholar
  21. Pilot, M., Jędrzejewski, W., Branicki, W., Sidorovich, V.E., Jedrzejewska, B., Stachura, K., Funk, S.M., 2006. Ecological factors influence population genetic structure of European grey wolves, Mol. Ecol. 15, 4533–4553.CrossRefGoogle Scholar
  22. Pilot, M., Branicki, W., Jędrzejewski, W., Goszczyński, J., Jedrzejewska, B., Dykyy, I., Shkvyrya, M., Tsingarska, E., 2010. Phylogeographic history of grey wolves in Europe. BMC Evol. Biol. 10, 104.CrossRefGoogle Scholar
  23. Posada, D., Crandall, K.A., 2001. Intraspecific gene genealogies: trees grafting into networks, Trends Ecol. Evol. 16, 37–45.CrossRefGoogle Scholar
  24. Randi, E., Lucchini, V., Christensen, M.F., Mucci, N., Funk, S.M., Dolf, G., Loeschcke, V., 2000. Mitochondrial DNA variability in Italian and East European wolves: detecting the consequences of small population size and hybridization, Conserv. Biol. 14, 464–473.CrossRefGoogle Scholar
  25. Randi, E., 2011. Genetics and conservation of wolves Canis lupus in Europe, Mammal. Rev. 41 (2), 99–111.CrossRefGoogle Scholar
  26. Salvatori, V., Linnell, J., 2005. Report on the conservation status and threats for wolf (Canis lupus) in Europe. Council of Europe T-PVS/Inf 2005, pp. 16.Google Scholar
  27. Sambrook, J.F., Russel, D.W., 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbour Laboratory Press, USA.Google Scholar
  28. Sastre, N., Vilà, C, Salinas, M., Bologov, V.V., Urios, V., Sánchez, A., Francino, O., Ramírez, O., 2011. Signatures of demographic bottlenecks in European wolf populations, Conserv. Genet. 12, 701–712.CrossRefGoogle Scholar
  29. štrbenac, A., Huber, D., Kusak, J., Majić-Skrbinšek, A., Frković, A., štahan, Ž., Jeremić-Martinko, J., Desnica, S., štrbenac, P., 2005. Wolf Management Plan for the Republic Croatia. State Institute for Nature Protection, Zagreb, Croatia.Google Scholar
  30. štrbenac, A., Huber, D., Kusak, J., Oković, P., Sindičić, M., Jeremić, J., Frković, A., Gomerčić, T., 2008. Large carnivore conservation in Croatia bulletin. State Institute for Nature Protection, Zagreb, Croatia.Google Scholar
  31. Stronen, A.V., Jedrzejewska, B., Pertoldi, C, Demontis, D., Randi, E., Niedziałkowska, M., Pilot, M., Sidorovich, V.E., Dykyy, I., Kusak, J., Tsingarska, E., Kojola, I., Kara-manlidis, A.A., Ornicans, A., Lobkov, V.A., Dumenko, V., Czarnomska, S.D., 2012. North-South differentiation and a region of high diversity in European Wolves (Canis lupus). Plos ONE 8 (10), e76454.Google Scholar
  32. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics 123, 585–595.PubMedPubMedCentralGoogle Scholar
  33. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28, 2731–2739.CrossRefGoogle Scholar
  34. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice, Nucl. Acids Res. 22, 4673–4680.CrossRefGoogle Scholar
  35. Valière, N., Fumagali, L, Gielly, L., Miquel, C, Lequette, B., Poulle, M.L., Weber, J.M., Arlettaz, R., Taberlet, P., 2003. Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years, Anim. Conserv. 6, 83–92.CrossRefGoogle Scholar
  36. Vilà, C, Amorim, I.R., Leonard, J.A., Posada, D., Castroviejo, J., Petrucci-Fonseca, F., Crandall, K.A., Ellegren, H., Wayne, R.K., 1999. Mitochondrial DNA phylogeog-raphy and population history of the grey wolf Canis lupus. Mol, Ecol. 8, 2089– 2103.Google Scholar
  37. Zachos, F.E., Ben Slimen, H., Hackländer, K., Giacometti, M., Suchentrunk, F., 2010. Regional genetic in situ differentiation despite phylogenetic heterogeneity in Alpine mountain hares, J. Zool. 282, 47–53.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Mihajla Djan
    • 1
    Email author
  • Vladimir Maletic
    • 2
  • Igor Trbojević
    • 3
  • Dunja Popović
    • 1
  • Nevena Velićković
    • 1
  • Jelena Burazerović
    • 4
  • Duško Ćirović
    • 4
  1. 1.Department of Biology and EcologyUniversity of Novi Sad, Faculty of SciencesNovi SadSerbia
  2. 2.University of Kiril and MetodijFaculty of ForestryThe Former Yugoslav Republic of MacedoniaYugoslavia
  3. 3.University of Banja Luka, Faculty of ScienceBanja LukaBosnia and Herzegovina
  4. 4.University of Belgrade, Faculty of BiologyBelgradeSerbia

Personalised recommendations