Mammalian Biology

, Volume 79, Issue 3, pp 189–194 | Cite as

Swimming performance in semiaquatic and terrestrial Oryzomyine rodents

  • Ricardo Tadeu SantoriEmail author
  • Ana Cláudia Delciellos
  • Marcus Vinicius Vieira
  • Nivar Gobbi
  • Mariana Fiuza de Castro Loguercio
  • Oscar Rocha-Barbosa
Original Investigation


Semiaquatic and terrestrial mammals frequently have to cross or move along water bodies, both trying to remain on the water surface using one or two pairs of limbs, combining different gaits and stride lengths and frequencies. This is the case of the semiaquatic water rats Nectomys and the cursorial Cerradomys, sister genera of the Oryzomyini tribe, capable of swimming using similar gaits. They provide an opportunity to investigate performance specializations involving the semiaquatic habitat, our objective in this study. Rodents were filmed at 30 frames s−1 in lateral view, swimming in a glass aquarium. Video sequences were analyzed dividing the swimming cycle into power and recovery phases. Differences in swimming performance were detected between species of Nectomys and Cerradomys, but not between species of the same genus. Absolute mean speed did not differ between the semiaquatic and terrestrial groups, but the semiaquatic Nectomys had longer stride lengths with lower stride frequency, whereas the terrestrial Cerradomys had higher stride frequency and relative swimming speed. The widest behavior repertoire of Nectomys allowed more efficient, but not necessarily faster swimming than the terrestrial Cerradomys. Efficient aquatic locomotion in Nectomys is ultimately a result of improved buoyancy by hydrophobic fur and subtle morphological specializations, which allow this genus to perform more efficiently in water than the terrestrial Cerradomys without compromising locomotion in the terrestrial environment.


Cerradomys Stride frequency Locomotion Nectomys Speed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R.McN., 2003. Principles of Animal Locomotion. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
  2. Alho, C.J.R., Villela, O.M.M., 1984. Scansorial ability in Oryzomys eliurus and O. subflavus (Rodentia: Cricetidae) from the cerrado. Rev. Bras. Biol. 44, 403–408.Google Scholar
  3. Arnold, S.J., 1983. Morphology, performance and fitness. Am. Zool. 23, 347–361.CrossRefGoogle Scholar
  4. Bennett, A.F., 1989. Integrated studies of locomotor performance. In: Wake, D.B., Roth, G. (Eds.), Complex Organismal Functions: Integration and Evolution in Vertebrates. Wiley & Sons Ltd., Chichester, UK, pp. 191–202.Google Scholar
  5. Bergallo, H.G., 1994. Ecology of a small mammal community in an Atlantic Forest area in Southeastern Brazil. Stud. Neotrop. Fauna Environ. 29, 197–217.CrossRefGoogle Scholar
  6. Bock, W.J., 1994. Concepts and methods in ecomorphology. J. Biosci. 19, 403–413.CrossRefGoogle Scholar
  7. Bonvicino, C.R., Oliveira, J.A., D‘Andrea, P.S., 2008. Guia dos roedores do Brasi, com chaves para gêneros baseadas em caracteres externos. Centro Pan-Americano de Febre Aftosa, Rio de Janeiro, Brazil.Google Scholar
  8. Dagg, A.I., Windsor, E., 1972. Swimming in northern terrestrial mammals. Can. J. Zool. 50, 117–130.CrossRefGoogle Scholar
  9. D’Andrea, P.S., Horta, C.A., Cerqueira, R., Rey, L., 1986. Breeding of the water rat (Nectomys squamipes) in the laboratory. Lab. Anim. 30, 369–376.CrossRefGoogle Scholar
  10. Delciellos, A.C., Vieira, M.V., 2006. Arboreal walking performance in seven didelphid marsupials of the Atlantic Forest as an aspect of the fundamental niche. Aust. Ecol. 31, 449–457.CrossRefGoogle Scholar
  11. Delciellos, A.C., Vieira, M.V., 2007. Stride lengths and frequencies of arboreal walking in seven species of didelphid marsupials. Acta Theriol. 52, 101–111.CrossRefGoogle Scholar
  12. Delciellos, A.C., Vieira, M.V., 2009. Allometric, phylogenetic and adaptive components of climbing performance in seven species of didelphid marsupials. J. Mammal. 90, 104–113.CrossRefGoogle Scholar
  13. Ernest, K.A., Mares, M.A., 1986. Ecology of Nectomys squamipes, the neotropical water rat, in central Brazil: home range, habitat selection, reproduction and behaviour. J. Zool. 210, 599–612.CrossRefGoogle Scholar
  14. Fish, F.E., 1982. Aerobic energetics of surface swimming in the muskrat (Ondatra zibethicus). Physiol. Zool. 55, 180–189.CrossRefGoogle Scholar
  15. Fish, F.E., 1984. Mechanics, power output and efficiency of the swimming muskrat (Ondatrazibethicus).J. Exp. Biol. 110, 183–201.Google Scholar
  16. Fish, F.E., 1992. Aquatic locomotion. In: Tomasi, T., Horton, T. (Eds.), Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction. Cornell University Press, Ithaca, NY, pp. 34–63.Google Scholar
  17. Fish, F.E., 1993a. Comparison of swimming kinematics betweenterrestrial and semiaquatic opossums. J. Mammal. 74, 275–284.CrossRefGoogle Scholar
  18. Fish, F.E., 1993b. Influence of hydrodynamic design and propulsive mode on mammalian swimming energetics. Aust. J. Zool. 42, 79–101.CrossRefGoogle Scholar
  19. Fish, F.E., 1996a. Measurement of swimming kinematics in small terrestrial mammals. In: Ossenkopp, K.P., Kavaliers, M., Sandberg, P.R. (Eds.), Measuring Movement and Locomotion: From Invertebrates to Humans. Chapman & Hall, London, UK, p. 309.Google Scholar
  20. Fish, F.E., 1996b. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36, 628–641.CrossRefGoogle Scholar
  21. Fish, F.E., Baudinette, R.V., 1999. Energetics of locomotion by the Australian water rat (Hydromys chrysogaster): a comparison of swimming and running in a semiaquatic mammal. J. Exp. Biol. 202, 353–363.PubMedPubMedCentralGoogle Scholar
  22. Fish, F.E., Stein, B.H., 1991. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorphology 110, 339–345.CrossRefGoogle Scholar
  23. Fonseca, G.A.B., Kierulff, M.C., 1989. Biology and natural history of Brazilian Atlantic forest small mammals. Bull. Florida State Mus. Biol. Sci. 34, 99–152.Google Scholar
  24. Heglund, N.C., Taylor, C.R., 1988. Speed, stride frequency and energy cost per stride: how do they change with body size and gait? J. Exp. Biol. 138, 301–318.Google Scholar
  25. Hickman, G.C., Machiné, C., 1986. Swimming behaviour in six species of African rodents (Criscetidae, Muridae). Acta Theriol. 31, 449–466.CrossRefGoogle Scholar
  26. Hildebrand, M., 1987. Analysis of Vertebrate Structure. John Wiley & Sons, New York, USA.Google Scholar
  27. Langguth, A., Bonvicino, C.R., 2002. The Oryzomys subflavus species group, with description of two new species (Rodentia, Muridae, Sigmodontinae). Arch. Mus. Nac. Rio de Janeiro 60, 285–294.Google Scholar
  28. Lodé, T., 1999. Comparative measurements of terrestrial and aquatic locomotion in Mustela lutreola and Mustela putorius. Zeitschrift für Saugetierkunde 64, 110–115.Google Scholar
  29. Moermond, T.C., 1986. A mechanistic approach to the structure of animal communities: Anolis lizards and birds. Am. Zool. 26, 23–37.CrossRefGoogle Scholar
  30. Pennycuick, C.J., 1975. On the running of the gnu (Connochaetes taurinus) and other animals. J. Exp. Biol. 63, 775–799.Google Scholar
  31. Percequillo, A.R., Hingst-Zaher, E., Bonvicino, C.R., 2008. Systematic review of genus Cerradomys Weksler, Percequillo and Voss, 2006 (Rodentia, Cricetidae, Sigmodontinae, Oryzomyini): with description oftwo new species from eastern Brazil. Am. Mus. Novit. 3622, 1–46.CrossRefGoogle Scholar
  32. Peters, R.H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  33. Phillipson, M., 1905. L’autonomie et la centralisation dans le système nerveux des animaux. Travaux de Laboratoire de Physiologie. Institut Solvay 7, 1–208.Google Scholar
  34. Prevedello, J.A., Rodrigues, R.G., Monteiro-Filho, E.L.A., 2010. Habitat selection by two species of small mammals in the Atlantic Forest, Brazil: comparing results from live trapping and spool-and-line tracking. Mamm. Biol. 75, 106–114.CrossRefGoogle Scholar
  35. Reis, N.R., Peracchi, A.L., Pedro, W.A., Lima, I.P., 2011. Mamíferos do Brasil, 2a Edição. Technical Books, Londrina, Brazil.Google Scholar
  36. Renous, S., 1994. Locomotion. Dunod, Paris, France.Google Scholar
  37. Ricklefs, R.E., Miles, D.B., 1994. Ecological and evolutionary inferences from morphology: an ecological perpective. In: Wainwright, P.C., Reilly, S.M. (Eds.), Ecological Morphology: Integrative Organismal Biology. Chicago University Press, Chicago, USA, pp. 13–41.Google Scholar
  38. Santori, R.T., Rocha-Barbosa, O., Vieira, M.V., Magnan-Neto, J.A., Loguercio, M.F.C., 2005. Locomotion in aquatic, terrestrial, and arboreal habitat of thick-tailed opossum, Lutreolina crassicaudata (Desmarest, 1804). J. Mamm. 86, 902–908.CrossRefGoogle Scholar
  39. Santori, R.T., Vieira, M.V., Rocha-Barbosa, O., Magnan-Neto, J.A., Gobbi, N., 2008. Water absorption by the fur and swimming behavior of semiaquatic and terrestrial oryzomine rodents. J. Mamm. 89, 1152–1161.CrossRefGoogle Scholar
  40. Santori, R.T., Loguercio, M.F.C., Rocha-Barbosa, O., Bocaccino, D., 2010. Técnicas de registro e análise de imagens em movimento aplicadas ao estudo do comportamento de mamíferos. In: Re, N.R., Peracchi, A.L., Rossaneis, B.K., Fregonezi, M.N. (Eds.), Técnicas de estudo aplicadas aos mamíferos silvestres brasileiros. Technical Books Editora, Rio de Janeiro, Brazil.Google Scholar
  41. Stallings, J.R., 1989. Small mammal inventories in an eastern Brazilian park. Bull. Florida Mus. Biol. Sci. 34, 153–200.Google Scholar
  42. Van Damme, R., Van Dooren, J.M., 1999. Absolute versus per unit body length speed of prey as an estimator of vulnerability to predation. Anim. Behav. 57, 347–352.CrossRefGoogle Scholar
  43. Vieira, M.V., 1997. Dynamics of a rodent assemblage in a cerrado of southeastern Brasil. Rev. Bras. Biol. 57, 99–107.Google Scholar
  44. Vieira, E.M., 1999. Small mammal communities and fire in the Brazilian Cerrado. J. Zool. 249, 75–81.CrossRefGoogle Scholar
  45. Wainwright, P.C., 1991. Ecomorphology: experimental functional anatomy for ecological problems. Am. Zool. 31, 680–693.CrossRefGoogle Scholar
  46. Walker Jr., W.F., Liem, K.F., 1994. Functional Anatomy of the Vertebrates: An Evolutionary Perspective. Saunders College Publishers, New York, USA.Google Scholar
  47. Webb, P.W., 1988. Simple physical principles and vertebrate aquatic locomotion. Am. Zool. 28, 709–725.CrossRefGoogle Scholar
  48. Weksler, M., 2006. Phylogenetic relationships of Oryzomine rodents (Muroidea: Sigmodontinae): separate and combined analyses of morphological and molecular data. Bull. Am. Mus. Nat. Hist. 296, 1–149.CrossRefGoogle Scholar
  49. Weksler, M., Percequillo, A.R., Voss, R.S., 2006. Ten new genera of Oryzomyine rodents (Cricetidae: Sigmodontinae). Am. Mus. Novit. 3537, 1–29.CrossRefGoogle Scholar
  50. Williams, T.M., 1983. Locomotion in the North American mink, a semi-aquatic mammal. 1. Swimming energetics and body drag. J. Exp. Biol. 103, 155–168.PubMedPubMedCentralGoogle Scholar
  51. Williams, T.M., 1989. Swimming by sea otters: adaptations for low energetic cost locomotion. J. Comp. Physiol. A 164, 815–824.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Zar, J.H., 1984. Biostatistical Analysis. Prentice-Hall International Editions, New Jersey, USA.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Ricardo Tadeu Santori
    • 1
    • 5
    Email author
  • Ana Cláudia Delciellos
    • 2
  • Marcus Vinicius Vieira
    • 2
  • Nivar Gobbi
    • 3
  • Mariana Fiuza de Castro Loguercio
    • 4
  • Oscar Rocha-Barbosa
    • 4
  1. 1.Núcleo de Pesquisa e Ensino de Ciências, Departamento de Ciências, Faculdade de Formação de ProfessoresUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Vertebrados, Departamento de EcologiaInstituto de Biologia, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de Ecologia, Instituto de BiociênciasUniversidade Estadual PaulistaRio ClaroBrazil
  4. 4.Laboratório de Zoologia de Vertebrados – Tetrapoda, Departamento de ZoologiaInstituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Departamento de CiênciasUniversidade do Estado do Rio de Janeiro, Faculdade de Formação de Professores, Rua Dr. Francisco Portela, 1470, Patronato, São GonçaloRio de JaneiroBrazil

Personalised recommendations