Advertisement

Mammalian Biology

, Volume 79, Issue 4, pp 240–246 | Cite as

Preservation of genetic diversity in a wild and captive population of a rapidly declining mammal, the Common hamster of the French Alsace region

  • Tobias Erik ReinersEmail author
  • Julien Eidenschenk
  • Karsten Neumann
  • Carsten Nowak
Original Investigation

Abstract

The Common hamster (Cricetus cricetus) faced massive population declines throughout its western range margin. In France, relict populations remained in the Alsace region. By comparing allelic diversity using microsatellite analysis over a time span of 12 years we investigated if this population decline led to genetic erosion in a French relict population of the species. Genetic diversity was moderate but comparable to other populations from Western Europe. Interestingly, no decline of allelic variation was revealed between 1999 and 2012 in the study region (expected heterozygosity = 0.51 in 1999 and 0.5 in 2012, respectively), suggesting a sufficiently high effective population size of ~500(179-956 SD). While several alleles were lost in a captive breed maintained for restocking purposes in the region, expected heterozygosity was comparably high (=0.5). Our results show that genetic diversity has been effectively maintained in a relict population of French Common hamsters despite of massive range loss. We recommend the maintenance of intense in situ conservation effort, along with regular monitoring of genetic diversity and effective population size.

Keywords

Cricetidae Relict population Genetic impoverishment Population decline Captive breeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E.C., Williamson, E.G., Thompson, E.A., 2000. Monte Carlo evaluation of the likelihood for Ne from temporally spaced samples, Genetics 156 (4), 2109–2118.PubMedPubMedCentralGoogle Scholar
  2. Bálint, M., Málnás, K., Nowak, C, Geismar, J., Váncsa, É., Polyák, L, Lengyel, S., Haase, P., 2012. Species history masks the effects of human-induced range loss - unexpected genetic diversity in the endangered Giant Mayfly Palingenia longicauda. PLoS ONE 7 (3), e31872.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Banaszek, A., Jadwiszczak, K.A., Ratkiewicz, M., Ziomek, J., Neumann, K., 2010. Population structure, colonization processes and barriers for dispersal in Polish Common hamsters (Cricetus cricetus).J. Zool, Syst. Evol. Res. 48 (2), 151–158.CrossRefGoogle Scholar
  4. Banaszek, A., Jadwiszczak, K.A., Ziomek, J., 2011. Genetic variability and differentiation in the Polish Common hamster (Cricetus cricetus L): genetic consequences of agricultural habitat fragmentation, Mamm. Biol. 76 (6), 665–671.CrossRefGoogle Scholar
  5. Bauert, M.R., Kälin, M., Baltisberger, M., Edwards, P.J., 1998. No genetic variation detected within isolated relict populations of Saxifraga cernua in the Alps using RAPD markers, Mol. Ecol. 7 (11), 1519–1527.CrossRefGoogle Scholar
  6. Berthier, P., Beaumont, M.A., Cornuet, J.M., Luikart, G., 2002. Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach, Genetics 160 (2), 741–751.PubMedPubMedCentralGoogle Scholar
  7. Broquet, T., Ménard, N., Petit, E., 2007. Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates, Conserv. Genet. 8 (1), 249–260.CrossRefGoogle Scholar
  8. Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics 144 (4), 2001–2014.PubMedPubMedCentralGoogle Scholar
  9. Earl, D.A., vonHoldt, B.M., 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4 (2.), 359–361.Google Scholar
  10. Eckert, C.G., Samis, K.E., Lougheed, S.C., 2008. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond, Mol. Ecol. 17(5), 1170–1188.PubMedCrossRefGoogle Scholar
  11. Eidenschenck, J., Grandadam, J., 2012. Mise en œuvre du Plan d’ action en faveur du Hamster commun (Cricetus cricetus) en Alsace. Actualisation de l’aire de répartition de l’espèce en 2012 et tendances d’évolution de l’abondance de l’espèce sur certains territoires. Discussion et perspectives, Rapport de l’ONCFS., pp. 55.Google Scholar
  12. Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol. 14 (8), 2611–2620.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Frankham, R., 2005. Genetics and extinction, Biol. Conserv. 126 (2), 131–140.CrossRefGoogle Scholar
  14. Frankham, R., Briscoe, DA, Ballou, J.D., 2002. Introduction to Conservation Genetics. Cambridge University Press.Google Scholar
  15. Franklin, I.R., 1980. Evolutionary Change in Small Populations. Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, MA, pp. 135–149.Google Scholar
  16. Jakob, S.S., Mammen, K., 2006. Eight new polymorphic microsatellite loci for genetic analyses in the endangered Common hamster (Cricetus cricetus L), Mol. Ecol. Notes 6 (2), 511–513.CrossRefGoogle Scholar
  17. La Haye, M., Neumann, K., Koelewijn, H., 2012. Strong decline of gene diversity in local populations of the highly endangered Common hamster (Cricetus cricetus) in the western part of its European range. Conserv. Genet, 1–12.CrossRefGoogle Scholar
  18. Losinger, I., Pöter, J., 2008. The second French Common Hamster Conservation Program. In: Milesi, E., Winkler, H., Hengsberger, R. (Eds.), The Common Hamster (Cricetus cricetus): Perspectives on an Endangered Species, 25. Austrian Academy of Sciences Press, Vienna, pp. 11–25.Google Scholar
  19. Losinger, I., Labouesse, A., 2002. Etude de la faisabilité de la réintroduction du Grand hamster en Alsace (Cricetus cricetus Linné, 1758). Considérations biologiques. Rapport pour l’ONCFS. pp. 69.Google Scholar
  20. Meinig, H.U., Boye, P., 2009. A review of negative impact factors threatening mammal populations in Germany, Folia Zool. 58, 279–290.Google Scholar
  21. Nechay, G., 2000. Report on the status of hamsters: Cricetus cricetus, Cricetulus migra-torius, Mesocricetus newtoni and other hamster species in Europe. Nature and Environment, Strasbourg, pp. 106.Google Scholar
  22. Nei, M., Tajima, F., 1981. Genetic drift and estimation of effective population size, Genetics 1981, 625–640.Google Scholar
  23. Neumann, K., Jansman, H., 2004. Polymorphic microsatellites for the analysis of endangered Common hamster populations (Cricetus cricetus L.), Conserv. Genet. 5 (1), 127–130.CrossRefGoogle Scholar
  24. Neumann, K., Jansman, H., Kayser, A., Maak, S., Gattermann, R., 2004. Multiple bottlenecks in threatened western European populations of the Common hamster Cricetus cricetus (L.), Conserv. Genet. 5 (2), 181–193.CrossRefGoogle Scholar
  25. Neumann, K., Michaux, J.R., Maak, S., Jansman, H.A.H., Kayser, A., Mundt, G., Gattermann, R., 2005. Genetic spatial structure of European Common hamsters (Cricetus cricetus): a result of repeated range expansion and demographic bottlenecks, Mol. Ecol. 14 (5), 1473–1483.PubMedCrossRefGoogle Scholar
  26. Peakall, R., Smouse, P.E., 2006. GENALEX 6: genetic analysis in Excel, Population genetic software for teaching and research. Mol. Ecol. Notes 6 (1), 288–295.Google Scholar
  27. Pritchard, J.K., Stephensa, M., Donnellya, P., 2000. Inference of population structure using multilocus genotype data, Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  28. Raymond, M., Rousset, F., 1995. Genepop (Version-1.2) - Population-Genetics Software for Exact Tests and Ecumenicism, J. Hered. 86 (3), 248–249.CrossRefGoogle Scholar
  29. Reiners, T., Encarnacão, J., Wolters, V., 2011a. An optimized hairtrap for non-invasive genetic studies of small cryptic mammals. Eur. J. Wildl. Res. 57 (4), 991–995.CrossRefGoogle Scholar
  30. Reiners, T.E., Bornmann, N., Wolters, V., Encarnacao, J.A., 2011b. Genetic diversity of Common hamster populations (Cricetus cricetus) revealed by non-invasive genetics. Saeugetierkd. Info. 8 (42), 99–105.Google Scholar
  31. Remón, N., Galán Pedro, Naveira, H., 2012. Chronicle of an extinction foretold: genetic properties of an extremely small population of Iberolacerta monticola. Conserv, Genet. 13 (1), 131–142.Google Scholar
  32. Selkoe, K.A., Toonen, R.J., 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers, Ecol. Lett. 9 (5), 615–629.PubMedCrossRefGoogle Scholar
  33. Schroeder, H., Yanbaev, Y., Degen, B., 2010. A very small and isolated population of the green oak leaf roller, Tortrix viridana L., with high genetic diversity - how does this work? J, Hered. 101 (6), 780–783.CrossRefGoogle Scholar
  34. Smulders, M.J.M., Snoek, L.B., Booy, G., Vosman, B., 2003. Complete loss of MHC genetic diversity in the Common Hamster (Cricetus cricetus) population in The Netherlands, Consequences for conservation strategies. Conserv. Genet. 4 (4), 441–451.CrossRefGoogle Scholar
  35. Taberlet, P., Waits, L.P., Luikart, G., 1999. Noninvasive genetic sampling: look before you leap, Trends Ecol. Evol. 14 (8), 323–327.CrossRefGoogle Scholar
  36. Tkadlec, E., Heroldova, M., Viskova, V., Bednar, M., Zejda, J., 2012. Distribution of the Common hamster in the Czech Republic after 2000: retreating to optimum lowland habitats. Folia Zool. 61 (3/4), 246–253.Google Scholar
  37. Ulbrich, K., Kayser, A., 2004. A risk analysis for the Common hamster (Cricetus cricetus). Biol, Conserv. 117 (3), 263–270.CrossRefGoogle Scholar
  38. Valiére, N., 2002. GIMLET: a computer program for analysing genetic individual identification data. Mol. Ecol. Notes 10, 1046.Google Scholar
  39. Villemey, A., Besnard, A., Grandadam, J., Eidenschenck, J., 2013. Testing restocking methods for an endangered species: effects of predator exclusion and vegetation cover on Common hamster (Cricetus cricetus) survival and reproduction, Biol. Conserv. 158, 147–154.CrossRefGoogle Scholar
  40. Wang, J., 2001. A pseudo-likelihood method for estimating effective population size from temporally spaced samples, Genet. Res. 78 (3), 243–258.PubMedCrossRefGoogle Scholar
  41. Weinhold, U, 2009. European Action Plan for the conservation of the Common hamster (Cricetus cricetus L. 1758). Convention on the Conservation of European Wildlife and Natural Habitats. Strasbourg, Council of Europe. Documents of the 28th meeting T-PVS/Inf (2008) 9 rev.Google Scholar
  42. Ziomek, J., Banaszek, A., 2007. The Common hamster, Cricetus cricetus in Poland: status and current range. Folia Zool. 56 (3), 235.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Tobias Erik Reiners
    • 1
    Email author
  • Julien Eidenschenk
    • 2
  • Karsten Neumann
    • 3
  • Carsten Nowak
    • 1
  1. 1.Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
  2. 2.Office National de la Chasse et de la Faune SauvageMoulins les MetzFrance
  3. 3.Institute of Pathology/Molecular Diagnostics SectionMedical Centre Dessau-RosslauDessau-RosslumGermany

Personalised recommendations