Evolutionary association between subterranean lifestyle and female sociality in rodents
Abstract
Subterranean rodents are a good model system to examine adaptive evolution of social organization. Life underground has been proposed either to favor solitariness or, to the contrary, to promote sociality. In concordance with the first idea, most specialized diggers are solitary. However, group-living in several unrelated subterranean rodent species and especially eusociality in two genera of African mole-rats, the Bathyergidae, seem to support the second hypothesis. Thus, none of the two models is fully consistent with empirical data. Here we apply the comparative phylogenetic method to test an evolutionary correlation between fossoriality and female social strategy (solitary breeding vs breeding in group). Both characters show very strong phylogenetic signal, and we found a significant correlation between them. Subterranean lifestyle is readily acquired under female sociality. By contrast, the transition to life underground is extremely unlikely under female solitariness. Thus, not only social behavior may be affected by ecological specialization as it is widely assumed, but it can itself restrain the range of possible specializations. The rates of transition from sociality to solitariness are equal under subterranean and surface-dwelling lifestyle. Sociality loss is irreversible in subterranean lineages, unlike surface-dwelling lineages. Based on the revealed transition rates we suggest that all lineages of subterranean rodents have gone through the stage of cooperation at the beginning of their evolutionary track, whereas group-living is selected against in highly specialized diggers. An odd pattern of distribution of sociality across and within truly subterranean taxa probably derives from the influence of extrinsic factors in combination with phylogenetic inertia.
Keywords
Rodentia Sociality Subterranean existence Comparative phylogenetic analysisPreview
Unable to display preview. Download preview PDF.
References
- Abramson, N.I., Lebedev, V.A., Tesakov, A.S., Bannikova, A.A., 2009. Supraspecies relationships in the subfamily (Rodentia, Cricetidae, Arvicolinae): unexpexted result of nuclear genes analysis. Mol. Biol. 43, 1–14 (in Russian).CrossRefGoogle Scholar
- Alexander, R.D., Noonan, K.M., Crespi, B.J., 1991. The evolution of eusociality. In: Sherman, P.W., Jarvis, J.U.M., Alexander, R.D. (Eds.), The Biology of the Naked Mole-Rat. Princeton University Press, Princeton, pp. 3–44.Google Scholar
- Begall, S., Burda, H., Gallardo, M.H., 1999. Reproduction, postnatal development, and growth of social coruros, Spalacopus cyanus (Rodentia: Octodontidae), from Chile. J. Mammal. 80, 210–217.CrossRefGoogle Scholar
- Bennett, N.C., 1989. The social structure and reproductive biology of the common mole-rat, Cryptomys h. hottentotus and remarks on the trends in reproduction and sociality in the family Bathyergidae. J. Zool. (Lond.) 219, 45–59.Google Scholar
- Bennett, N.C., Faulkes, C.G., 2000. African Mole-Rats: Ecology and Eusociality. Cambridge University Press, Cambridge.Google Scholar
- Bennett, N.C., Jarvis, J.U.M., 1988. The social-structure and reproductive-biology of colonies of the mole-rat, Cryptomys damarensis (Rodentia, Bathyergidae). J. Mammal. 69, 293–302.CrossRefGoogle Scholar
- Blomberg, S.P., Garland, T.Ir., 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910.CrossRefGoogle Scholar
- Blomberg, S.P., Garland, T.Ir., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745.PubMedCrossRefPubMedCentralGoogle Scholar
- Burda, H., 1989. Reproductive biology (behaviour, breeding, and postnatal development) in subterranean mole-rats, Cryptomys hottentotus (Bathyergidae). Z. Säugertierk. 54, 360–376.Google Scholar
- Burda, H., 1990. Constraints of pregnancy and evolution of sociality in mole-rats. With special reference to reproductive and social patterns in Cryptomys hot-tentotus (Bathyergidae, Rodentia). Z. Zool. Syst. Evol. forsch. 28, 26–39.Google Scholar
- Burda, H., Kawalika, M., 1993. Evolution of eusociality in the Bathyergidae: the case of the giant mole rats (Cryptomys mechowi). Naturwissenschaften 80, 235–237.PubMedCrossRefPubMedCentralGoogle Scholar
- Burda, H., Honeycutt, R.L., Begall, S., Locker-Grutjen, O., Scharff, A., 2000. Are naked and common mole-rats eusocial and if so, why? Behav. Ecol. Sociobiol. 47, 293–303.CrossRefGoogle Scholar
- Castilio, A.-H., Cortinas, M.N., Lessa, E.P., 2005. Rapid diversification of South American tuco tucos (Ctenomys; Rodentia, Ctenomyidae): contrasting mitochondrial and nuclear intron sequences. J. Mammal. 86, 170–179.CrossRefGoogle Scholar
- Cornwallis, C.K., West, S.A., Davis, K.E., Griffin, A.S., 2010. Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972.PubMedCrossRefPubMedCentralGoogle Scholar
- Davies, N.B., Krebs, J.R., West, S.A., 2012. An Introduction to Behavioural Ecology, 4th ed. Wiley-Blackwell, Chichester, UK.Google Scholar
- Dobson, F.S., 1982. Competition for mates and predominant juvenile male dispersal in mammals. Anim. Behav. 30, 1183–1192.CrossRefGoogle Scholar
- Ebensperger, L.A., Blumstein, D.T., 2006. Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behav. Ecol. 17, 410–418.CrossRefGoogle Scholar
- Ebensperger, L.A., Cofrer, H., 2001. Ontheevolutionofgroup-livinginthe New World cursorial hystricognath rodents. Behav. Ecol. 12, 227–236.CrossRefGoogle Scholar
- Edwards, S.V., Naeem, S., 1993. Thephylogenetic componentofcooperativebreeding in perching birds. Am. Nat. 141, 754–789.PubMedCrossRefPubMedCentralGoogle Scholar
- Eisenberg, J.F., 1963. The Behavior of Heteromyid Rodents. University of California Press, Berkeley.Google Scholar
- Eisenberg, J.F., 1966. The social organization of mammals. Handb. Zool. Band 8, Lief. 39 10, 1–92.Google Scholar
- Evdokimov, N.G., 2001. Population Ecology of the Mole-Vole. Izdatel’stvo Ekather-inburg, Ekatherinburg (in Russian).Google Scholar
- Faulkes, C.G., Bennett, N.C., Bruford, M.W., O’Brien, H.P., Aguilar, G.H., Jarvis, J.U.M., 1997. Ecological constraints drive social evolution in the African mole-rats. Proc. R. Soc. Lond., Ser. B 264, 1619–1627.CrossRefGoogle Scholar
- Faulkes, C.G., Bennett, N.C., 2007. African mole-rats: social and ecological diversity. In: Wolff, J.O., Sherman, P.W. (Eds.), Rodent Societies: An Ecological and Evolutionary Perspective. Univers Chicago Press, Chicago, London, pp. 427–437.Google Scholar
- Felsenstein, J., 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Mas-sachusets.Google Scholar
- Fleming, T.H., 1979. Life history strategies. In: Stoddard, D.M. (Ed.), Ecology of Small Mammals. Chapman & Hall, London, pp. 1–61.Google Scholar
- Flynn, L.J., Lindsay, E.H., Martin, R.A., 2008. Geomorpha. In: Janis, C.M., Gunnell, G.F., Uhen, M.D. (Eds.), Evolution of Tertiary Mammals of North America V. Small Mammals, Xenarthrans, and Marine Mammals. Cambridge University Press, Cambridge, pp. 428–455.CrossRefGoogle Scholar
- Flynn, L.J., 2009. The antiquity of Rhizomys and independent acquisition of fossorial traits in subterranean muroids. Bull. Am. Mus. Nat. Hist. 331, 128–156.CrossRefGoogle Scholar
- Garland Jr., T., Adolph, S.C., 1994. Why not to do two species comparative studies: limitations on inferring adaptations. Physiol. Zool. 67, 797–828.CrossRefGoogle Scholar
- Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511.CrossRefGoogle Scholar
- Gittleman, J.L., Anderson, C.G., Kot, M., Luh, H.-K., 1996. Phylogenetic lability and rates of evolution: a comparison of behavioral, morphological and life history traits. In: Martins, E.P. (Ed.), Phylogenies and the Comparative Method in Animal Behavior. Oxford Univ. Press, Oxford, U.K, pp. 166–205.Google Scholar
- Gromov, I.M., Polyakov, Ya.I.,1977. Voles (Microtinae). FaunaoftheUSSR:Mammals. 3. Nauka, Leningrad.Google Scholar
- Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analyses program for Windows 95/98/NT. Nucl. Ac. Symp. Ser. 41, 95–98.Google Scholar
- Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E., Challenger, W., 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131.PubMedCrossRefPubMedCentralGoogle Scholar
- Huelsenbeck, J.P., Bull, J.J., 1996. A likelihood ratio test to detect conflicting phylo-genetic signal. Syst. Biol. 45, 92–98.CrossRefGoogle Scholar
- Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference in phylogenetic trees. Bioinformatics 17, 754–755.CrossRefGoogle Scholar
- Jarvis, J.U.M., 1981. Eu-socialityinamammal–cooperative breeding innaked mole-rat Heterocephalus glaber colonies. Science 212, 571–573.PubMedCrossRefGoogle Scholar
- Jarvis, J.U.M., O’Riain, J.M., Bennett, N.C., Sherman, P.W., 1994. Mammalian eusocial-ity: a family affair. TREE 9 Suppl. 92, 47–51.Google Scholar
- Kazancıoglu, E., Alonzo, S.H., 2010. A comparative analysis of sex change in Labridae supports the size advantage hypothesis. Evolution 64, 2254–2264.PubMedGoogle Scholar
- Lacey, E.A., 2000. Spatial and social systems of subterranean rodents. In: Lacey, E.A., Patton, J.L., Cameron, G.N. (Eds.), The Biology of Subterranean Rodents. Life Underground. Chicago Univ. Press, Chicago & London, pp. 257–296.Google Scholar
- Lacey, E.A., 2004. Sociality reduces individual direct fitness in a communally breeding rodent, the colonial tuco-tuco (Ctenomys sociabilis). Behav. Ecol. Sociobiol. 56, 449–457.CrossRefGoogle Scholar
- Lacey, E.A., Braude, S.H., Wieczorek, J.R., 1997. Burrow sharing by colonial tuco-tucos (Ctenomys sociabilis). J. Mammal. 78, 556–562.CrossRefGoogle Scholar
- Lacey, E.A., Ebensperger, L.A., 2007. Social structure in octodontid and ctenomyid rodents. In: Wolff, J.O., Sherman, P.W. (Eds.), Rodent Societies: An Ecological and Evolutionary Perspective. Univers Chicago Press, Chicago, London, pp. 403–415.Google Scholar
- Lacey, E.A., Wieczorek, J.R., 2003. The ecology of sociality in rodents: a ctenomyid perspective. J. Mammal. 84, 1198–1211.CrossRefGoogle Scholar
- Lavocat, R., 1978. Rodentia and Lagomorpha. In: Maglio, V.J., Cooke, H.B.S. (Eds.), Evolution of African Mammals. Harvard University Press, MA, pp. 69–89.Google Scholar
- Lessa, E.P., Vassallo, A.I., Verzi, D.H., Mora, M.S., 2008. Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biol. J. Linn. Soc. 95, 267–283.CrossRefGoogle Scholar
- Linnen, C.R., Farrell, N.D., 2008. Comparison of methods for species-tree inference in theSawflygenusNeodiprion(Hymenoptera:Diprionidae).Syst.Biol.57, 876–890.Google Scholar
- Lovegrove, B.G., Wissel, C., 1988. Sociality in molerats. Metabolic scaling and the role of risk sensitivity. Oecologia 74, 600–606.PubMedPubMedCentralGoogle Scholar
- Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge, MA.CrossRefGoogle Scholar
- McNab, B.K., 1966. The metabolism of fossorial rodents. A study of convergence. Ecology 47, 712–733.Google Scholar
- Montgelard, C., Forty, E., Arnal, V., Matthee, C.A., 2008. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evol. Biol. 8, 1–16.CrossRefGoogle Scholar
- Münkemüller, T., Lavergne, S., Bzezni, B., Dray, S., Jombart, T., Schiffers, K., Thuiller, W., 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756.CrossRefGoogle Scholar
- Nevo, E., 1979. Adaptive convergence and divergence of subterranean mammals. Ann. Rev. Ecol. Syst. 10, 269–308.CrossRefGoogle Scholar
- Nevo, E.,1999. Mosaic Evolutionof SubterraneanMammals: Regression, Progression and Global Convergence. Oxford University Press, Oxford, New York etc.Google Scholar
- Nel, J.A.J., Kok, O.B., 1999. Diet and foraging group size in the yellow mongoose: a comparison with the suricate and the bat-eared fox. Ethol. Ecol. Evol. 11, 25–34.CrossRefGoogle Scholar
- Nosil, P., Mooers, A.Ø., 2005. Testing hypotheses about ecological specialization using phylogenetic trees. Evolution 59, 2256–2263.PubMedCrossRefPubMedCentralGoogle Scholar
- Opazo, J.C., 2005. A molecular timescale for caviomorph rodents (Mammalia Hys-tricognathi). Mol. Phyl. Evol. 37, 932–937.CrossRefGoogle Scholar
- Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–884.PubMedPubMedCentralCrossRefGoogle Scholar
- Pagel, M., Meade, A., 2006. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825.PubMedCrossRefPubMedCentralGoogle Scholar
- Pagel, M., Meade, A., 2009. BayesTraits (Software is Available from https://doi.org/www.evolution.rdg.ac.uk
- Parada, A., D’Elía, G., Bidau, C.J., Lessa, E.P., 2011. Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae). J. Mammal. 92, 671–682.CrossRefGoogle Scholar
- Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256.PubMedCrossRefPubMedCentralGoogle Scholar
- Prendini, L., Francke, O.F., Vignoli, V., 2010. Troglomorphism, trichobothri-otaxy and typhlochactid phylogeny (Scorpiones, Chactoidea): more evidence that troglobitism is not an evolutionary dead-end. Cladistics 26, 117–142.CrossRefGoogle Scholar
- Rendall, D., DiFiore, A., 2007. Homoplasy, homology, and the perceived special status of behavior in evolution. J. Hum. Evol. 52, 504–521.PubMedCrossRefPubMedCentralGoogle Scholar
- Rodriguez-Serrano, E., Palma, R.E., Hernandez, C.E., 2008. The evolution of ecomor-phological traits within the Abrothrichini (Rodentia: Sigmodontinae): a bayesian phylogenetics approach. Mol. Phylogenet. Evol. 48, 473–480.PubMedCrossRefPubMedCentralGoogle Scholar
- Ronquist, F., Teslenko, P., van der Mark, D., Ayres, A., Darling, S.H., Höhna, B., Larget, L., Liu, M., Suchard, A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.PubMedPubMedCentralCrossRefGoogle Scholar
- Smorkatcheva, A.V., 1999. The social organization of the mandarine vole, Lasiopodomys mandarinus, during the reproductive period. Z. Säugertierk. 64, 344–355.Google Scholar
- Stein, B.R., 2000. Morphology of subterranean rodents. In: Lacey, E.A., Patton, J.L., Cameron, G.N. (Eds.), The Biology of Subterranean Rodents. Life Underground. Chicago Univ. Press, Chicago & London, pp. 19–61.Google Scholar
- Sumbera, R., Chitaukali, W.N., Burda, H., 2007. Biology of the silvery mole-rat (Helio-phobius argenteocinereus). Why study a neglected subterranean rodent species? In: Begall, S., Burda, H., Schleich, C. (Eds.), News from Underground. Springer, Heidelberg, Germany, pp. 221–236.Google Scholar
- Tassino, B., Estevana, I., Garberoa, R.P., Altesora, P., Lacey, E.A., 2011. Space use by Rio Negro tuco-tucos (Ctenomys rionegrensis): excursions and spatial overlap. Mammal. Biol. 76, 143–147.CrossRefGoogle Scholar
- Tesakov, A.S., 2008. Early Pleistocene mammalian fauna of Sarkel (Lower Don River area, Russia): mole voles (Ellobiusini, Arvicolinae, Rodentia). Russ. J. Theriol. 7, 81–88.CrossRefGoogle Scholar
- Thierry, B., Iwaniuk, A.N., Pellis, S.M., 2000. The influence of phylogeny on the social behaviourofmacaques (Primates, Cercopithecidae, genus Macaca). Ethology 106, 713–728.CrossRefGoogle Scholar
- Verzi, D.H., 2008. Phylogeny and adaptive diversity of rodents of the family Cteno-myidae (Caviomorpha): delimiting lineages and genera in the fossil record. J. Zool. (Lond.) 274, 386–394.CrossRefGoogle Scholar
- Verzi, D.H., Olivares, A.I., Morgan, C.C., 2010. The oldest South American tuco-tuco (late Pliocene, north western Argentina) and the boundaries of the genus Cteno-mys (Rodentia, Ctenomyidae). Mammal. Biol. 75, 243–252.CrossRefGoogle Scholar
- Wilson, D.E., Reeder, D.M., 2005. Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed. Johns Hopkins University Press, Baltimore, MD.Google Scholar
- Wcislo, W.T., 1989. Behavioral environments and evolutionary change. Ann. Rev Ecol. Syst. 20, 137–169.CrossRefGoogle Scholar