Advertisement

Mammalian Biology

, Volume 79, Issue 1, pp 36–43 | Cite as

Are degraded habitats from agricultural crops associated with elevated faecal glucocorticoids in a wild population of common vole (Microtus arvalis)?

  • Álvaro Navarro-CastillaEmail author
  • Isabel Barja
  • Pedro P. Olea
  • Ana Piñeiro
  • Patricia Mateo-Tomás
  • Gema Silván
  • Juan Carlos Illera
Original Investigation

Abstract

The severe impact of agriculture on species’ abundance and diversity is widely recognized. However, its effects on the physiology of wild animal populations are poorly known. We analyzed faecal glucocorti¬coids levels in wild common voles (Microtus arvalis) living in a farmland landscape to test whether living in degraded habitats, such as crops, is correlated with increased glucocorticoids. Other factors such as sex, reproductive status, and population density were also considered. We captured voles with Sherman traps in crops and in their field margins which were comprised of semi-natural vegetation. We collected fresh faecal samples from captured individuals and quantified their levels of faecal corticosterone metabolites (FCM) in the laboratory. The quantification of FCM concentrations was performed by competitive enzyme immunoassay. Individuals captured within the crops had higher levels of FCM than those in field margins; females and breeding individuals exhibited higher FCM levels. In addition, FCM concentrations positively correlated with abundance of voles. Our results suggest that degraded habitats in agricultural landscapes are associated with increased glucocorticoid levels on common voles likely caused by a higher disturbance from agricultural practices and a lesser vegetation cover in crops compared with field margins.

Keywords

Anthropogenic disturbance Faecal corticosterone metabolites Field margins Managed landscapes Small mammals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann, K., 2004. Biosafety in agriculture: is it justified to compare directly with natural habitats? In: Wolfenbarger, L.L, Andow, DA, Hilbeck, A., et al (Eds.), Frontiers in Ecology, Forum: GM Crops: Balancing Predictions of Promise and Peril. ESA Ecological Society of America, Washington, pp. 154–160.Google Scholar
  2. Arlettaz, R., Krähenbühl, M., Almasi, B., Roulin, A., Schaub, M., 2010. Wildflower areas within revitalized agricultural matrices boost small mammal populations but not breeding Barn Owls. J. Ornithol. 151, 553–564.CrossRefGoogle Scholar
  3. Balmelli, L, Nentwig, W., Airoldi, J.P., 1999. Food preferences of the common vole Microtus arvalis in the agricultural landscape with regard to nutritional components of plants. Z. Säugetierkd. 64, 154–168.Google Scholar
  4. Bamberg, E., Palme, R., Meingassner, J.G., 2001. Excretion of corticosteroid metabolites in urine and faeces of rats. Lab. Anim. 35, 307–314.PubMedCrossRefGoogle Scholar
  5. Barja, I., Escribano, G., Lara, C, Virgós, E., Benito, J., Rafart, E., 2012. Non-invasive monitoring of adrenocortical activity in European badgers (Meles meles) and effects of sample collection and storage on faecal cortisol metabolite concentrations. Anim. Biol. 62, 419–432.CrossRefGoogle Scholar
  6. Barja, I., Silván, G., Rosellini, S., Piñeiro, A., Illera, M.J., Illera, J.C., 2008. Quantification of sexual steroid hormones in faeces of Iberian wolf (Canis lupus signatus): a non-invasive sex typing method. Reprod. Domest. Anim. 43, 701–707.PubMedCrossRefGoogle Scholar
  7. Barja, I., Silván, G., Rosellini, S., Piñeiro, A., González-Gil, A., Camacho, L., Illera, J.C., 2007. Stress physiological responses to tourist pressure in a wild population of European pine marten. J. Steroid Biochem. 104, 136–142.CrossRefGoogle Scholar
  8. Bauman, D.E., 2000. Regulation of nutrient partitioning during lactation: homeostasis and homeorhesis revisited. In: Cronjé, P.B. (Ed.), Ruminant Physiology: Digestion, Metabolism and Growth and Reproduction. CAB Publishing, New York, pp. 311–327.CrossRefGoogle Scholar
  9. Benton, T.G., Vickery, J.A., Wilson, J.D., 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188.Google Scholar
  10. Boonstra, R., Hik, D., Singleton, G.R., Tinnikov, A., 1998. The impact of predator-induced stress on the snowshoe hare cycle. Ecol. Monogr. 79, 371–394.CrossRefGoogle Scholar
  11. Boyce, C.C.K., Boyce, J.L., 1988. Population biology of Microtus arvalis II. Natal and breeding dispersal of females. J. Anim. Ecol. 57, 723–736.Google Scholar
  12. Briner, T., Nentwig, W., Airoldi, J.P., 2005. Habitat quality of wildflower strips for common voles (Microtus arvalis) and its relevance for agriculture. Agric. Ecosyst. Environ. 105, 173–179.CrossRefGoogle Scholar
  13. Broom, D.M., Johnson, K.G., 1993. Stress and Animal Welfare. Chapman & Hall, London, UK.CrossRefGoogle Scholar
  14. Brotons, L, Mañosa, S., Estrada, J., 2004. Modelling the effects of irrigation schemes on the distribution of steppe birds in Mediterranean farmland. Biodivers. Conserv. 13, 1039–1058.CrossRefGoogle Scholar
  15. Brown, J.L., Wildt, D.E., 1997. Assessing reproductive status in wild felids by noninvasive faecal steroid monitoring. Int. Zoo Yearb. 35, 173–191.CrossRefGoogle Scholar
  16. Brown, R.W., 1999. Margin/field interfaces and small mammals. Aspects Appl. Biol. 54, 203–210.Google Scholar
  17. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, USA.Google Scholar
  18. Busch, D.S., Hayward, L.S., 2009. Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol. Conserv. 142, 2844–2853.CrossRefGoogle Scholar
  19. Byrom, A.E., Karels, T.J., Krebs, C.J., Boonstra, R., 2000. Experimental manipulation of predationand food supply of arctic ground squirrels in the boreal forest. Can. J. Zool. 78, 1309–1319.CrossRefGoogle Scholar
  20. Carobrez, S.G., Gasparotto, O.C., Buwalda, B., Bohus, B., 2002. Long-term consequences of social stress on corticosterone and IL-1ß levels in endotoxin-challenged rats. Physiol. Behav. 76, 99–105.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cook, C.J., Mellor, D.J., Harris, P.J., Ingram, J.R., Matthews, L.R., 2000. Hands-on and hands-off measurement of stress. In: Moberg, G.P., Mench, J.A. (Eds.), The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare. CABI Publishing, New York, pp. 123–146.CrossRefGoogle Scholar
  22. Crawley, M.J., 2007. The R Book. John Wiley & Sons, Chichester, UK.CrossRefGoogle Scholar
  23. Creel, S., Winnie, J.A., Christianson, D., 2009. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. Proc. Natl. Acad. Sci. U.S.A. 106, 12388–12393.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Creel, S., Fox, J.E., Hardy, A., Sands, J., Garrott, B., Peterson, R.O., 2002. Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conserv. Biol. 16, 809–814.CrossRefGoogle Scholar
  25. Dehnhard, M., Clauss, M., Lechner-Doll, M., Meyer, H.H.D., Palme, R., 2001. Noninvasive monitoring of adrenocortical activity in roe deer (Capreolus capreolus) by measurement of fecal cortisol metabolites. Gen. Comp. Endocrinol. 123, 111–120.PubMedCrossRefGoogle Scholar
  26. Donald, P.F., Green, R.E., Heath, M.F., 2001. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. B 268, 25–29.CrossRefGoogle Scholar
  27. Fletcher, Q.E., Boonstra, R., 2006. Do captive male meadow voles experience acute stress in response to weasel odour? Can. J. Zool. 84, 583–588.Google Scholar
  28. Good, T., Khan, M.Z., Lynch, J.W., 2003. Biochemical and physiological validation of a corticosteroid radioimmunoassay for plasma and fecal samples in oldfield mice (Peromyscus polionotus). Physiol. Behav. 80, 405–411.PubMedCrossRefGoogle Scholar
  29. Götz, A.A., Stefanski, V., 2007. Psychosocial maternal stress during pregnancy affects serum corticosterone, blood immune parameters and anxiety behaviour in adult male rat offspring. Physiol. Behav. 90, 108–115.PubMedCrossRefGoogle Scholar
  30. Goymann, W., 2005. Noninvasive monitoring of hormones in bird droppings: physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann. N. Y. Acad. Sci. 1046, 35–53.PubMedCrossRefGoogle Scholar
  31. Goymann, W., Wingfield, J.C., 2004. Allostatic load, social status and stress hormones: the costs of social status matter. Anim. Behav. 67, 591–602.CrossRefGoogle Scholar
  32. Goymann, W., East, M.L., Wachter, B., Höner, O.P., Möstl, E., Van’t Holf, T.J., Hofer, H., 2001. Social, state-dependent and environmental modulation of faecal corticosteroid levels in free-ranging female spotted hyenas. Proc. R. Soc. B 268, 2453–2459.PubMedCrossRefGoogle Scholar
  33. Graham, L.H., Brown, J.L., 1996. Cortisol metabolism in the domestic cat and implications for non-invasive monitoring of adrenocortical function in endangered felids. Zoo Biol. 15, 71–82.CrossRefGoogle Scholar
  34. Gurnell, J., Flowerdew, J.R., 1994. Live Trapping Small Mammals. A Practical Guide. The Mammal Society, London, UK.Google Scholar
  35. Halle, S., 1993. Diel pattern of predation risk in microtine rodents. Oikos 68, 510–518.CrossRefGoogle Scholar
  36. Harper, J.M., Austad, S.N., 2000. Fecal glucocorticoids: a noninvasive method of measuring adrenal activity in wild and captive rodents. Physiol. Biochem. Zool. 73, 12–22.PubMedCrossRefGoogle Scholar
  37. Harper, J.M., Austad, S.N., 2001. Effect of capture and season on fecal glucocorticoid levels in deer mice (Peromyscus maniculatus) and red-backed voles (Clethrionomys gapperi). Gen. Comp. Endocrinol. 123, 337–344.PubMedCrossRefGoogle Scholar
  38. Harper, J.M., Austad, S.N., 2004. Fecal corticosteroid levels in free-living populations of deer mice (Peromyscus maniculatus) and southern red-backed voles (Clethrionomys gapperi). Am. Midl. Nat. 152, 400–409.CrossRefGoogle Scholar
  39. Hayssen, V., Harper, J.M., DeFina, R., 2002. Fecal corticosteroids in agouti and non-agouti deer mice (Peromyscus maniculatus). Comp. Biochem. Phys. A 132, 439–446.CrossRefGoogle Scholar
  40. Heroldová, M., Jánová, E., Bryja, J., Tkadlec, E., 2005. Set-aside plots—source of small mammal pests? Folia Zool. 54, 337–350.Google Scholar
  41. Jacob, J., 2000. Populationsökologische Untersuchungen an Kleinnagern auf unterschiedlich bewirtschafteten Flächen der Unstrut-Aue. Friedrich-Schiller-University, Jena, Germany (Ph.D. thesis).Google Scholar
  42. Jacob, J., Brown, J.S., 2000. Microhabitat use, giving-up densities and temporal activity as short-and long-term anti-predator behaviors in common voles. Oikos 91, 131–138.CrossRefGoogle Scholar
  43. Krebs, J.R., Wilson, J.D., Bradbury, R.B., Siriwardena, G.M., 1999. The second silent spring? Nature 400, 611–612.CrossRefGoogle Scholar
  44. Lemen, C.A., Clausen, M.K., 1984. The effects of mowing on the rodent community of a native tall grass prairie in eastern Nebraska. Prairie Nat. 16, 5–10.Google Scholar
  45. Lepschy, M., Touma, C, Hruby, R., Palme, R., 2007. Non-invasive measurement of adrenocortical activity in male and female rats. Lab. Anim. 41, 372–387.PubMedCrossRefGoogle Scholar
  46. Louch, CD., Higginbotham, M., 1967. The relation between social rank and plasma corticosterone levels in mice. Gen. Comp. Endocrinol. 8, 441–444.PubMedCrossRefGoogle Scholar
  47. Mackin-Rogalska, R., 1981. Spatial structure of rodent populations co-occurring in different crop fields. Pol. Ecol. Stud. 7, 213–227.Google Scholar
  48. Mateo-Tomás, P., Olea, P.P., 2009. Combining scales in habitat models to improve conservation planning in an endangered vulture. Acta Oecol. 35, 489–498.CrossRefGoogle Scholar
  49. Melmed, S., Kleinberg, D., 2003. Anterior pituitary. In: Larsen, P.R., Kronenberg, H.M., Melmed, S., Polonsky, K.S. (Eds.), Williams Textbook of Endocrinology. Saunders, Philadelphia, pp. 177–279.Google Scholar
  50. Millspaugh, J.J., Washburn, B.E., Milanick, M.A., Slotow, R., van Dyk, G., 2003. Effects of heat and chemical treatments on fecal glucocorticoid measurements: implications for sample transport. Wildl. Soc. B. 31, 399–406.Google Scholar
  51. Millspaugh, J.J., Woods, R.J., Hunt, K.E., Raedeke, K.J., Brundige, G.C., Washburn, B.E., Wasser, S.K., 2001. Fecal glucocorticoid assays and the physiological stress response in elk. Wildl. Soc. B. 29, 899–907.Google Scholar
  52. Moen, A.N., Whittemore, S., Buxton, B., 1982. Effects of disturbance by snow-mobilies on heart rate of captive white-tailed deer. N. Y. Fish Game J. 29, 176–183.Google Scholar
  53. Monclús, R., Palomares, F., Tablado, Z., Martínez-Fontúrbel, A., Palme, R., 2009. Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits. Oecologia 158, 615–623.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Monfort, S.L., Mashburn, K.L., Brewer, B.A., Creel, S.R., 1998. Evaluating adrenal activity in African wild dogs (Lycaon pictus) by fecal corticosteroid analysis. J. Zoo Wildl. Med. 29, 129–133.PubMedGoogle Scholar
  55. Monfort, S.L., Wasser, S.K., Mashburn, K.L., Burke, M., Brewer, B.A., Creel, S.R., 1997. Steroid metabolism and validation of noninvasive endocrine monitoring in the African wild dog (Lycaon pictus). Zoo Biol. 16, 533–548.CrossRefGoogle Scholar
  56. Morrow, C.J., Kolver, E.S., Verkerk, G.A., Matthews, L.R., 2002. Fecal glucocorticoid metabolites as a measure of adrenal activity in dairy cattle. Gen. Comp. Endocrinol. 126, 229–241.PubMedCrossRefGoogle Scholar
  57. Möstl, E., Palme, R., 2002. Hormones as indicators of stress. Domest. Anim. Endocrin. 23, 67–74.CrossRefGoogle Scholar
  58. Munck, A., Guyre, P.M., Holbrook, N.J., 1984. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 5, 25–48.PubMedCrossRefGoogle Scholar
  59. Nakagawa, S., Schielzeth, H., 2012. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142.CrossRefGoogle Scholar
  60. Nováková, M., Palme, R., Kutalová, H., Jansky, L., Frynta, D., 2008. The effects of sex, age and commensal way of life on levels of fecal glucocorticoid metabolites in spiny mice (Acomys cahirinus). Physiol. Behav. 95, 187–193.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Olea, P.P., 2009. Analysing spatial and temporal variation in colony size: an approach using autoregressive mixed models and information theory. Popul. Ecol. 51, 161–174.CrossRefGoogle Scholar
  62. Olea, P.P., Sánchez-Barbudo, I.S., Viñuela, J., Barja, I., Mateo-Tomás, P., Pineiro, A., Mateo, R., Purroy, F.J., 2009. Lack of scientific evidence and precautionary principle in massive release of rodenticides threatens biodiversity: old lessons need new reflections. Environ. Conserv. 36, 1–4.CrossRefGoogle Scholar
  63. Orrock, J.L., Danielson, B.J., Brinkerhoff, R.J., 2004. Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav. Ecol. 15, 433–437.CrossRefGoogle Scholar
  64. Palme, R., Robia, C, Messmann, S., Möstl, E., 1998. Measuring faecal cortisol metabolites: a non-invasive tool to evaluate adrenocortical activity in mammals. Adv. Ethol. 33, 27–46.Google Scholar
  65. Pineiro, A., Barja, I., Silván, G., Illera, J.C., 2012. Effects of tourist pressure and reproduction on physiological stress response in wildcats: management implications for species conservation. Wildl. Res. 39, 532–539.CrossRefGoogle Scholar
  66. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., The R Development Core Team, 2013. NLME: Linear and Nonlinear Mixed Effects Models, https://doi.org/CRAN.R-project.org/package=nlme. R package version 3.1-109.
  67. Place, N.J., Kenagy, G.J., 2000. Seasonal changes in plasma testosterone and glucocorticoids in free-living male yellowpine chipmunks and response to capture and handling. J. Comp. Physiol. B 170, 245–251.PubMedCrossRefGoogle Scholar
  68. Preston, C.R., 1990. Distribution of raptor foraging in relation to prey biomass and habitat structure. Condor 92, 107–112.CrossRefGoogle Scholar
  69. R Development Core Team, 2013. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  70. Raouf, S.A., Smith, L.C., Brown, M.B., Wingfield, J.C., Brown, C.R., 2006. Glucocorticoid hormone levels increase with group size and parasite load in cliff swallows. Anim. Behav. 71, 39–48.CrossRefGoogle Scholar
  71. Reeder, D.M., Kramer, K.M., 2005. Stress in free-ranging mammals: integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235.CrossRefGoogle Scholar
  72. Robinson, R.A., Sutherland, W.J., 2002. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176.CrossRefGoogle Scholar
  73. Rogovin, K., Randall, J.A., Kolosova, I., Moshkin, M., 2003. Social correlates of stress in adult males of the great gerbil, Rhombomys opimus, in years of high and low population densities. Horm. Behav. 43, 132–139.PubMedCrossRefGoogle Scholar
  74. Romero, L.M., 2004. Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19, 249–255.PubMedCrossRefGoogle Scholar
  75. Sapolsky, R.M., 1992. Neuroendocrinology of the stress-response. In: Becker, J.B., Breedlove, S.M., Crews, D. (Eds.), Behavioral Endocrinology. MIT Press, Cambridge, pp. 287–324.Google Scholar
  76. Sapolsky, R.M., 2002. Endocrinology of the stress-response. In: Becker, J.B., Breedlove, S.M., Crews, D., McCarthy, M.M. (Eds.), Behavioral Endocrinology. MIT Press, Cambridge, pp. 409–450.Google Scholar
  77. Sapolsky, R.M., Romero, L.M., Munck, A.U., 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89.PubMedGoogle Scholar
  78. Schradin, C, 2008. Seasonal changes in testosterone and corticosterone levels in four social classes of a desert dwelling sociable rodent. Horm. Behav. 53, 573–579.PubMedCrossRefGoogle Scholar
  79. Sheffield, L.M., Crait,J.R., Edge, W.D., Wang, G., 2001. Response of American kestrels and gray-tailed voles to vegetation height and supplemental perches. Can. J. Zool. 79, 380–385.CrossRefGoogle Scholar
  80. Silvan, G., Martinez-Mateos, M.M., Blass, A., Camacho, L., Gonzalez-Gil, A., Garcia-Partida, P., Illera, J.C., 2007. The effect of long-term exposure to combinations of growth promoters in Long Evans rats, part 1: endocrine adrenal function. Anal. Chim. Acta 586, 246–251.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Stewart, P.M., 2003. The adrenal cortex. In: Larsen, P.R., Kronenberg, H.M., Melmed, S., Polonsky, K.S. (Eds.), Williams Textbook of Endocrinology. Saunders, Philadel¬phia, pp. 491–551.Google Scholar
  82. Strier, K.B., Lynch, J.W., Ziegler, T.E., 2003. Hormonal changes during the mating and conception seasons of wild northern muriquis (Brachyteles arachnoides hypox-anthus). Am. J. Primatol. 61, 85–99.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Sullivan, T.P., Hogue, E.J., 1987. Influence of orchard floor management on vole and pocket gopher populations and damage in apple orchards. J. Am. Soc. Hortic. Sci. 112, 972–977.Google Scholar
  84. Tataranni, PA, Larson, D.E., Snitker, S., Young, J.B., Flatt, J.P., Ravussin, E., 1996. Effects of glucocorticoids on energy metabolism and food intake in humans. Am. J. Physiol-Endoc. M 271, 317–325.Google Scholar
  85. Thiel, D., Jenni-Eiermann, S., Palme, R., Jenni, L., 2011. Winter tourism increases stress hormone levels in the capercaillie Tetrao urogallus. Ibis 153, 122–133.CrossRefGoogle Scholar
  86. Touma, C, Palme, R., 2005. Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann. N. Y. Acad. Sci. 1046, 54–74.PubMedCrossRefGoogle Scholar
  87. Touma, C, Palme, R., Sachser, N., 2004. Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones. Horm. Behav. 45, 10–22.PubMedCrossRefGoogle Scholar
  88. Touma, C, Sachser, N., Möstl, E., Palme, R., 2003. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen. Comp. Endocrinol. 130, 267–278.PubMedCrossRefGoogle Scholar
  89. Tucker, G., Heath, M.F., Tomialojc, L., 1994. Birds in Europe: Their Conservation Status. BirdLife Conservation Series, Cambridge.Google Scholar
  90. van Meter, P.E., French, J.A., Dloniak, S.M., Watts, H.E., Kolowski, J.M., Holekamp, K.E., 2009. Fecal glucocorticoids reflect socio-ecological and anthropogenic stressors in the lives of wild spotted hyenas. Horm. Behav. 55, 329–337.PubMedCrossRefGoogle Scholar
  91. von der Ohe, C.G., Wasser, S.K., Hunt, K.E., Servheen, C, 2004. Factors associated with fecal glucocorticoids in Alaskan brown bears (Ursus arctos horribilis). Physiol. Biochem. Zool. 77, 313–320.PubMedCrossRefGoogle Scholar
  92. Washburn, B.E., Millspaugh, J.J., 2002. Effects of simulated environmental conditions on glucocorticoid metabolite measurements in white-tailed deer feces. Gen. Comp. Endocrinol. 127, 217–222.PubMedCrossRefGoogle Scholar
  93. Wingfield, J.C, Romero, L.M., 2001. Adrenocortical responses to stress and their modulation in free-living vertebrates. In: McEwen, B.S., Goodman, H.M. (Eds.), Handbook of Physiology - Coping with the Environment: Neural and Endocrine Mechanisms. Oxford University Press, New York, pp. 211–234.Google Scholar
  94. Wingfield, J.C, Hunt, K., Breuner, C, Dunlap, K., Fowler, G.S., Freed, L, Lepson, J., 1997. Environmental stress, field endocrinology, and conservation biology. In: Clemmons, J.R., Buchholds, R. (Eds.), Behavioral Approaches to Conservation in the Wild. Cambridge University Press, Cambridge, pp. 95–131.Google Scholar
  95. Ylönen, H., Eccard, J.A., Jokinen, I., Sundell, J., 2006. Is the antipredatory response in behaviour reflected in stress measured in faecal corticosteroids in a small rodent? Behav. Ecol. Sociobiol. 60, 350–358.CrossRefGoogle Scholar
  96. Young, K.M., Walker, S.L., Lanthier, C, Waddell, W.T., Monfort, S.L., Brown, J.L., 2004. Noninvasive monitoring of adrenocortical activity in carnivores by fecal glucocorticoid analyses. Gen. Comp. Endocrinol. 137, 148–165.PubMedCrossRefGoogle Scholar
  97. Zwijacz-Kozica, T., Selva, N., Barja, I., Silván, G., Martínez-Fernández, L, Illera, J.C, Jodłowski, M., 2013. Concentration of fecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriol. 58, 215–222.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Álvaro Navarro-Castilla
    • 1
    • 4
    Email author
  • Isabel Barja
    • 1
  • Pedro P. Olea
    • 2
  • Ana Piñeiro
    • 1
  • Patricia Mateo-Tomás
    • 2
  • Gema Silván
    • 3
  • Juan Carlos Illera
    • 3
  1. 1.Departamento Biología, Unidad Zoología, Facultad CienciasUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCMCiudad RealSpain
  3. 3.Departamento de Fisiología (Fisiología Animal), Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain
  4. 4.Unidad de Zoología, Departamento de BiologíaUniversidad Autónoma de Madrid, C/ Darwin 2, Campus Universitario de CantoblancoMadridSpain

Personalised recommendations