Mammalian Biology

, Volume 79, Issue 2, pp 81–89 | Cite as

The behavior of female meadow voles, Microtus pennsylvanicus, during postpartum estrus and the responses of males to them

  • Michael H. FerkinEmail author
  • Javier delBarco-Trillo


For numerous species of terrestrial mammals, postpartum estrus, PPE, is a period of heightened attractivity, proceptivity, and receptivity that occurs shortly after the female delivers her litter. Many mammals mate almost exclusively during PPE. However, we know little about the behavior of PPE females and how male conspecifics behave toward them. This review focuses on the results of recent studies that tried to examine systematically the behavior of PPE female meadow voles, Microtus pennsylvanicus, and the responses of males to them. Our review is divided in five parts. First, we introduce the topic of PPE in rodents. Second, we discuss the outcome of studies showing that PPE female voles were more attractive to males, directed more proceptive behaviors toward males, and were more sexually receptive and likely to get pregnant compared to females that were not in PPE. Third, we discuss studies that examined how male voles respond and adjust their behavior when they encounter PPE females. Males increase the likelihood of mating with PPE females by recalling the reproductive state of females and the location of their nests, and by anticipating how long or when each of these females would be in PPE. Fourth, we focus in how food availability, an ecological constraint facing gestating female voles, affected their attractivity, proceptivity, and receptivity postpartum. Fifth, we revisit the benefits of seeking out and mating with PPE females and introduce the costs of doing so for both males and PPE females. We close our review with a list of questions that can be used to formulate testable hypotheses surrounding the behavior of PPE females and the responses of male conspecifics to them.


Postpartum estrus Scent marking Episodic memory Sperm competition Food deprivation/availability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ågren, G., 1990. Sperm competition, pregnancy initiation and litter size: influence of theamountofcopulatorybehaviourinMongoliangerbils, Merionesunguiculatus. Anim. Behav. 40, 417–427.CrossRefGoogle Scholar
  2. Asa, C.S., Mech, L.D., Seal, U.S., Plotka, E.D., 1990. The influenceofsocial and endocrine factors on urine-marking by captive wolves (Canis lupus). Horm. Behav. 24, 497–509.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Batzli, G.O., 1985. Nutrition. In: Tamarin, R.H. (Ed.), Biology of New World Microtus., pp. 779–811.Google Scholar
  4. Beach, F.A., 1976. Sexual attractivity, proceptivity, and receptivity in female mammals. Horm. Behav. 7, 105–138.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bean, C.A., Estep, D.Q., 1981. Postpartum copulation and induction of pregnancy in roof rats (Rattus rattus). Physiol. Behav. 27, 785–789.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bergeron, J.-M., Brunet, R., Jodoin, L., 1990. Is space management of female meadow voles (Microtus pennsylvanicus) related to nutritive quality of plants? Oecologia 82, 531–536.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bergeron, J.M., Jodoin, L., 1987. Defining “high quality” food resources of herbivores: the case for meadow voles (Microtus pennsylvanicus). Oecologia 71, 510–517.CrossRefGoogle Scholar
  8. Berteaux, D., Bety, J., Rengifo, E., Bergeron, J., 1999. Multiple paternity in meadow voles (Microtus pennsylvanicus): investigating the role of the female. Behav. Ecol. Sociobiol. 45, 283–291.CrossRefGoogle Scholar
  9. Boonstra, R., Xia, X., Pavone, L., 1993. Mating system of the meadow vole, Microtus pennsylvanicus. Behav. Ecol. 4, 83–89.CrossRefGoogle Scholar
  10. Borowski, Z., 1998. Influence of weasel (Mustela nivalis Linnaeus, 1766) odour on spatial behaviour of root voles (Microtus oeconomus Pallas, 1776). Can. J. Zool. 76, 1799–1804.CrossRefGoogle Scholar
  11. Bronson, F.H., 1989. Mammalian Reproductive Biology. University of Chicago Press, Chicago.Google Scholar
  12. Brown, R.E., 1985a. The rodents I: effects of odours on reproductive physiology (primer effects). In: Brown, R.E., Macdonald, D.W. (Eds.), Social Odours in Mammals. , 1st ed. Oxford University Press, Oxford, pp. 245–344.Google Scholar
  13. Brown, R.E., 1985b. Therodents II: suborderMyomorpha. In: Brown, R.E., Macdonald, D.W. (Eds.), Social Odours inMammals.,1st ed. Oxford University Press, Oxford, pp. 345–457.Google Scholar
  14. Bruce, H.M., Parkes, A.S., 1961. The effect of concurrent lactation on the olfactory block to pregnancy in the mouse. J. Endocrinol. 22, vi–vii.Google Scholar
  15. Carter, C.S., Getz, L.L., 1993. Monogamy and the prairie vole. Sci. Am. 268, 100–106.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Carter, C.S., Getz, L.L., Cohen-Parsons, M., 1986. Relationships between social organization and behavioural endocrinology in a monogamous mammal. Adv. Stud. Behav. 16, 109–145.CrossRefGoogle Scholar
  17. Carter, C.S., Witt, D.M., Manock, S.R., Adams, K.A., Bahr, J.M., Carlstead, K., 1989. Hormonal correlates of sexual behavior and ovulation in male-induced and postpartum estrus in female prairie voles. Physiol. Behav. 46, 941–948.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Clayton, N.S., Griffiths, D.P., Emery, N.J., Dickinson, A., 2002. Elements of episodic-like memory inanimals. In: Baddeley, A., Conway, M., Aggleton, J. (Eds.), Episodic Memory: New Directions in Research. Oxford University Press, New York, pp. 232–248.CrossRefGoogle Scholar
  19. Conaway, C.H., 1968. Post partum estrus in a sciurid. J. Mammal. 49, 158–159.CrossRefGoogle Scholar
  20. Conaway, C.H., 1971. Ecological adaptation and mammalian reproduction. Biol. Reprod. 4, 239–247.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Connor, J.R., Davis, H.N., 1980a. Postpartum estrus in Norway rats. I. Behavior. Biol. Reprod. 23, 994–999.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Connor, J.R., Davis, H.N., 1980b. Postpartum estrus in Norway rats. II. Physiology. Biol. Reprod. 23, 1000–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Coquelin, A., 1992. Urine-marking by female mice throughout their reproductive cycle. Horm. Behav. 26, 255–271.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Crystal, J.D., 2009. Elements of episodic-like memory in animal models. Behav. Process. 80, 269–277.CrossRefGoogle Scholar
  25. Crystal, J.D., 2010. Episodic-like memory in animals. Behav. Brain Res. 215, 235–243.PubMedPubMedCentralCrossRefGoogle Scholar
  26. delBarco-Trillo, J., 2011. Adjustment of sperm allocation under high risk of sperm competition across taxa: a meta-analysis. J. Evol. Biol. 24, 1706–1714.PubMedCrossRefPubMedCentralGoogle Scholar
  27. delBarco-Trillo, J., Ferkin, M.H., 2004. Male mammals respond to a risk of sperm competition conveyed by odours of conspecific males. Nature 431, 446–449.PubMedCrossRefPubMedCentralGoogle Scholar
  28. delBarco-Trillo, J., Ferkin, M.H., 2006a. Male meadow voles respond differently to risk and intensity of sperm competition. Behav. Ecol. 17, 581–585.CrossRefGoogle Scholar
  29. delBarco-Trillo, J., Ferkin, M.H., 2006b. Similarities between female meadow voles mating during post-partum oestrus and raising two concurrent litters and females raising only one litter. Reprod. Fertil. Dev. 18, 751–756.CrossRefGoogle Scholar
  30. delBarco-Trillo, J., Ferkin, M.H., 2007a. Female meadow voles, Microtus pennsylvan-icus, experience a reduction in copulatory behavior during postpartum estrus. Ethology 113, 466–473.CrossRefGoogle Scholar
  31. delBarco-Trillo, J., Ferkin, M.H., 2007b. Risk of sperm competition does not influence copulatorybehaviorinthepromiscuous meadowvole(Microtuspennsylvanicus). J. Ethol. 25, 139–145.CrossRefGoogle Scholar
  32. Desy, E.A., Batzli, G.O., 1989. Effects of food availability and predation on prairie vole demography: a field experiment. Ecology 70, 411–421.CrossRefGoogle Scholar
  33. Dewsbury, D.A., 1972. Patterns of copulatory behavior in male mammals. Q. Rev. Biol. 47, 1–33.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dewsbury, D.A., 1978. The comparative method instudies of reproductive behavior. In: McGill, T.E., Dewsbury, D.A., Sachs, B.D. (Eds.), Sex and Behavior: Status and Prospectus. Plenum, New York, pp. 83–112.CrossRefGoogle Scholar
  35. Dewsbury, D.A., 1979a. Copulatory behavior ofdeer mice (Peromyscus maniculatus): II. A study of some factors regulating the fine structure of behavior. J. Comp. Physiol. Psychol. 93, 161–177.Google Scholar
  36. Dewsbury, D.A., 1979b. Copulatory behaviorof deer mice (Peromyscus maniculatus): III. Effects on pregnancy initiation. J. Comp. Physiol. Psychol. 93, 178–188CrossRefGoogle Scholar
  37. Dewsbury, D.A., 1979c. Pregnancy and copulatory behavior in random-bred miceGoogle Scholar
  38. mated in postpartum estrus. Bull. Psychon. Soc. 13, 320–322.Google Scholar
  39. Dewsbury, D.A., 1982. Ejaculate cost and male choice. Am. Nat. 119, 601–610.CrossRefGoogle Scholar
  40. Dewsbury, D.A., 1984. Sperm competition in muroid rodents. In: Smith, R.L. (Ed.), Sperm Competition and the Evolution of Animal Mating Systems. Academic Press, New York, pp. 547–571.CrossRefGoogle Scholar
  41. Dewsbury, D.A., 1985. Studies of pericopulatory pregnancy blockage and the gestation period in deer mice (Peromyscus maniculatus). Horm. Behav. 19, 164–173.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Dewsbury, D.A., 1988. Copulatory behavior as courtship communication. Ethology 79, 218–234.CrossRefGoogle Scholar
  43. Dewsbury, D.A., 1990. Modes of estrus induction as a factor in studies of the reproductive behavior of rodents. Neurosci. Biobehav. Rev. 14, 147–155.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dewsbury, D.A., Evans, R.L., Webster, D.G., 1979. Pregnancy initiation in postpartum estrus in three species of muroid rodents. Horm. Behav. 13, 1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Diamond, M., 1972. Vaginal stimulation and progesterone in relation to pregnancy and parturition. Biol. Reprod. 6, 281–287.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Dryden, G.L., 1969. Reproduction in Suncus murinus. J. Reprod. Fertil. Suppl. 6, 377–396.Google Scholar
  47. Dugatkin, L.A., 1992. Sexual selection and imitation: females copy the mate choice of others. Am. Nat. 139, 1384–1389.CrossRefGoogle Scholar
  48. Ferkin, M.H., 2006. The amountoftime thatameadow vole, Microtus pennsylvanicus, self-grooms is affected by its reproductive state and that of the odor donor. Behav. Process. 73, 266–271.CrossRefGoogle Scholar
  49. Ferkin, M.H., 2011. Odor-related behavior and cognition in meadow voles, Microtus pennsylvanicus (Arvicolidae, Rodentia). Folia Zool. 60, 262–276.CrossRefGoogle Scholar
  50. Ferkin, M.H., Combs, A., DelBarco-Trillo, J., Pierce, A.A., Franklin, S., 2008. Meadow voles, Microtus pennsylvanicus, have the capacity to recall the “what”, “where”, and “when” of a single past event. Anim. Cogn. 11, 147–159.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ferkin, M.H., Dunsavage, J., Johnston, R.E., 1999. What kind of information do meadow voles (Microtus pennsylvanicus) useto distinguish between the top and bottom scent of an over-mark? J. Comp. Psychol. 113, 43–51.CrossRefGoogle Scholar
  52. Ferkin, M.H., Johnston, R.E., 1995a. Effects of pregnancy, lactation and postpartum oestrus on odour signals and the attraction to odours in female meadow voles, Microtus pennsylvanicus. Anim. Behav. 49, 1211–1217.CrossRefGoogle Scholar
  53. Ferkin, M.H., Johnston, R.E., 1995b. Meadowvoles, Microtus pennsylvanicus, use multiple sources of scent for sex recognition. Anim. Behav. 49, 37–44.CrossRefGoogle Scholar
  54. Ferkin, M.H., Lee, D.N., Leonard, S.T., 2004a. The reproductive state of female voles affects their scent marking behavior and the responses of male conspecifics to such marks. Ethology 110, 257–272.CrossRefGoogle Scholar
  55. Ferkin, M.H., Leonard, S.T., 2010. Self-groomingasaformofolfactorycommunication in meadow voles and prairie voles (Microtus spp.). In: Kalueff, A.V., LaPorte, J.L., Bergner, C. (Eds.), Neurobiology of Grooming Behavior. Cambridge University Press, Cambridge, pp. 19–47.CrossRefGoogle Scholar
  56. Ferkin, M.H., Li, H.Z., Leonard, S.T., 2004b. Meadow voles and prairie voles differ in the percentage of conspecific marks that they over-mark. Acta Ethol. 7, 1–17.CrossRefGoogle Scholar
  57. Ferkin, M.H., Pierce, A.A., Sealand, R.O., delBarco-Trillo, J., 2005. Meadow voles, Microtus pennsylvanicus, can distinguish more over-marks from fewer over-marks. Anim. Cogn. 8, 182–189.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Ferkin, M.H., Seamon, J.O., 1987. Odor preference and social behavior in meadow voles, Microtus pennsylvanicus: seasonal differences. Can. J. Zool. 65, 2931–2937.CrossRefGoogle Scholar
  59. Féron, C., Gouat, P., 2007. Paternal care inthe mound-building mouse reduces inter-litter intervals. Reprod. Fertil. Dev. 19, 425–429.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Franklin, S., Ferkin, M.H., 2006. An ontology for comparative cognition: a functional approach. Comp. Cogn. Behav. Rev. 1, 36–52.CrossRefGoogle Scholar
  61. Franklin, S., Ferkin, M.H., 2008. Usingbroadcognitive modelstoapplycomputational intelligence to animal cognition. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (Eds.), ApplicationsofComputational Intelligence inBiology: Current Trends and Open Problems. Springer, Berlin, pp. 363–394.Google Scholar
  62. Galef Jr., B.G., 1983. Costs and benefits of mammalian reproduction. In: Rosenblum, A., Moltz, H. (Eds.), Symbiosis in Parent-Offspring Interactions. Plenum Press, New York, pp. 249–278.CrossRefGoogle Scholar
  63. Galef Jr., B.G., Lim, T.C.W., Gilbert, G.S., 2008. Evidence of mate choice copying in Norway rats, Rattus norvegicus. Anim. Behav. 75, 1117–1123.CrossRefGoogle Scholar
  64. Getz, L.L., 1985. Habitats. In: Tamarin, R.H. (Ed.), Biology of New World Microtus. American Society of Mammalogists, pp. 286–309.Google Scholar
  65. Getz, L.L., Carter, C.S., 1996. Prairie-vole partnerships. Am. Sci. 84, 56–62.Google Scholar
  66. Getz, L.L., Carter, C.S., Gavish, L., 1981. The mating system ofthe prairie vole, Microtus ochrogaster: field and laboratory evidence for pair-bonding. Behav. Ecol. Sociobiol. 8, 189–194.CrossRefGoogle Scholar
  67. Gilbert, A.N., 1984. Postpartum and lactational estrus: a comparative analysis in Rodentia. J. Comp. Psychol. 98, 232–245.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gilbert, A.N., Pelchart, R.J., Adler, N.T., 1980. Postpartum copulatory and maternal behavior in Norway rats under seminatural conditions. Anim. Behav. 28, 989–995.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gill, C.J., Rissman, E.F., 1997. Female sexual behavior is inhibited by short- and long-term food restriction. Physiol. Behav. 61, 387–394.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Gomendio, M., Harcourt, A.H., Roldan, E.R.S., 1998. Sperm competition in mammals. In: Birkhead, T.R., Møller, A.P. (Eds.), Sperm Competition and Sexual Selection. Academic Press, London, pp. 667–751.CrossRefGoogle Scholar
  71. Gray, G.D., Dewsbury, D.A., 1975. A quantitative description of the copulation behaviour of meadow voles (Microtus pennsylvanicus). Anim. Behav. 23, 261–267.CrossRefGoogle Scholar
  72. Gray, G.D., Kenney, A.M., Dewsbury, D.A., 1977. Adaptive significance ofthe copulatory behavior pattern of male meadow voles (Microtus pennsylvanicus) in relation to induction of ovulation and implantation in females. J. Comp. Physiol. Psychol. 91, 1308–1319.CrossRefGoogle Scholar
  73. Gubernick, D.J., Nordby, J.C., 1993. Mechanisms of sexual fidelity in the monogamous California mouse, Peromyscus californicus. Behav. Ecol. Sociobiol. 32, 211–219.CrossRefGoogle Scholar
  74. Hanwell, A., Peaker, M., 1977. Physiological effects of lactation on the mother. Symp. Zool. Soc. Lond. 41, 297–312.Google Scholar
  75. Hasler, J.F., 1975. A review of reproduction and sexual maturation in the microtine rodents. Biologist 57, 52–86.Google Scholar
  76. Hedricks, C., McClintock, M.K., 1985. The timing of mating by postpartum estrous rats. Z. Tierpsychol. 67, 1–16.CrossRefGoogle Scholar
  77. Hobbs, N.J., Ferkin, M.H., 2011a. Dietary protein content affects the response of meadow voles, Microtus pennsylvanicus, to over-marks. Acta Ethol. 14, 57–64.CrossRefGoogle Scholar
  78. Hobbs, N.J., Ferkin, M.H., 2011b. Effect of protein content ofthe diet on scent marking and over-marking behavior in meadow voles, Microtus pennsylvanicus. Behaviour 148, 1027–1044.CrossRefGoogle Scholar
  79. Hobbs, N.J., Ferkin, M.H., 2012. The response of male meadow voles, Microtus pennsylvanicus, to same- and mixed-sex over-marks depends on the reproductive state of the top-and bottom-female scent donors. Behaviour 149, 705–722.CrossRefGoogle Scholar
  80. Hobbs, N.J., Finger, A.A., Ferkin, M.H., 2012. Effects of food availability on proceptiv-ity: atest ofthe reproduction at all costs and metabolic fuels hypotheses. Behav. Process. 91, 192–197.CrossRefGoogle Scholar
  81. Houston, A.I., Stephens, P.A., Boyd, I.L., Harding, K.C., McNamara, J.M., 2007. Capital or income breeding? A theoretical model of female reproductive strategies. Behav. Ecol. 18, 241–250.CrossRefGoogle Scholar
  82. Huck, U.W., Lisk, R.D., Gore, A.C., 1985. Scent marking and mate choice in the golden hamster. Physiol. Behav. 35, 389–393.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Johnston, R.E., 1979. Olfactory preferences, scent marking, and ‘proceptivity’ in female hamsters. Horm. Behav. 13, 21–39.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Johnston, R.E., Sorokin, E.S., Ferkin, M.H., 1997a. Female voles discriminate males’ over-marks and prefer top-scent males. Anim. Behav. 54, 679–690.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Johnston, R.E., Sorokin, E.S., Ferkin, M.H., 1997b. Scent counter-marking by male meadow voles: females preferthe top-scent male. Ethology 103, 443–453.CrossRefGoogle Scholar
  86. Jones, J.E., Wade, G.N., 2002. Acute fasting decreases sexual receptivity and neural estrogen receptor-a in female rats. Physiol. Behav. 77, 19–25.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kawata, M., 1985. Mating system and reproductive success in a spring population ofthe red-backed vole, Clethrionomys rufocanus bedfordiae. Oikos 45, 181–190.CrossRefGoogle Scholar
  88. Keller, B.L., 1985. Reproductive patterns. In: Tamarin, R.H. (Ed.), Biology of New World Microtus., pp. 725–778.Google Scholar
  89. Kingsbury, M.A., Gleason, E.D., Ophir, A.G., Phelps, S.M., Young, L.J., Marler, C.A., 2012. Monogamous and promiscuous rodent species exhibit discrete variation in the size ofthe medial prefrontal cortex. Brain Behav. Evol. 80, 4–14.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Krackow, S., 1989. Effect of food restriction on reproduction and lactation in house mice mated post partum. J. Reprod. Fertil. 86, 341–347.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lai, S.-C, Vasilieva, N.Y., Johnston, R.E., 1996. Odors providing sexual information in Djungarian hamsters: evidence foranacross-odorcode. Horm. Behav. 30, 26–36.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Logan, C.J., O’Donnell, S., Clayton, N.S., 2011. A case of mental time travel in ant-following birds? Behav. Ecol. 22, 1149–1153.Google Scholar
  93. Loman, J., Madsen, T., Håkansson, T., 1988. Increased fitness from multiple matings and genetic heterogeneity: a model of a possible mechanism. Oikos 52, 69–72.CrossRefGoogle Scholar
  94. Madison, D.M., 1980. An integrated view ofthe social biology of Microtus pennsylvanicus. Biologist 62, 20–33.Google Scholar
  95. Madison, D.M., 1985. Activity rhythms and spacing. In: Tamarin, R.H. (Ed.), Biology of New World Microtus. American Society of Mammalogists, pp. 373–419.Google Scholar
  96. Mallory, F.F., Clulow, F.V., 1977. Evidence of pregnancy failure in the wild meadow vole, Microtus pennsylvanicus. Can. J. Zool. 55, 1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Mantalenakis, S.J., Ketchel, M.M., 1966. Frequency and extent of delayed implantation in lactating rats and mice. J. Reprod. Fertil. 12, 391–394.PubMedCrossRefPubMedCentralGoogle Scholar
  98. McShea, W.J., Madison, D.M., 1989. Measurements of reproductive traits in a field population of meadow voles. J. Mammal. 70, 132–141.CrossRefGoogle Scholar
  99. Meek, L.R., Lee, T.M., 1993. Female meadow voles have a preferred mating pattern predicted by photoperiod, which influences fertility. Physiol. Behav. 54, 1201–1210.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Milligan, S.R., 1982. Induced ovulation in mammals. Oxf. Rev. Reprod. Biol. 4, 1–46.Google Scholar
  101. Mustonen, A.-M., Käkelä, R., Halonen, T., Kärjä, V., Vartiainen, E., Nieminen, P., 2012. Fatty acid mobilization in voles – model species for rapid fasting response and fatty liver. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 163, 152–160.CrossRefGoogle Scholar
  102. Nadeau, J.H., 1985. Ontogeny. In: Tamarin, R.H. (Ed.), Biologyof NewWorldMicrotus. American Society of Mammalogists, pp. 254–285.Google Scholar
  103. Nordell, S.E., Valone, T.J., 1998. Mate choice copying as public information. Ecol. Lett. 1, 74–76.CrossRefGoogle Scholar
  104. Oftedal, O.T., 1984. Milk composition, milk yield and energy output at peak lactation: a comparative review. Symp. Zool. Soc. Lond. 51, 33–85.Google Scholar
  105. Parker, G.A., 1970. Sperm competition and its evolutionary consequences in insects. Biol. Rev. Camb. Philos. Soc. 45, 525–567.CrossRefGoogle Scholar
  106. Parker, G.A., Ball, M.A., Stockley, P., Gage, M.J.G., 1996. Sperm competition games: individual assessment of sperm competition intensity by group spawners. Proc. R. Soc. Lond. B 263, 1291–1297.CrossRefGoogle Scholar
  107. Parker, G.A., Ball, M.A., Stockley, P., Gage, M.J.G., 1997. Sperm competition games: a prospective analysis of risk assessment. Proc. R. Soc. Lond. B 264, 1793–1802.CrossRefGoogle Scholar
  108. Parker, G.A., Pizzari, T., 2010. Sperm competition and ejaculate economics. Biol. Rev. Camb. Philos. Soc. 85, 897–934.PubMedPubMedCentralGoogle Scholar
  109. Pierce, A.A., Ferkin, M.H., 2005. Re-feeding and the restoration of odor attractivity, odor preference, and sexual receptivity in food-deprived female meadow voles. Physiol. Behav. 84, 553–561.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Pierce, A.A., Ferkin, M.H., Williams, T.K., 2005. Food-deprivation-induced changes in sexual behaviour of meadow voles, Microtus pennsylvanicus. Anim. Behav. 70, 339–348.CrossRefGoogle Scholar
  111. Raby, C.R., Clayton, N.S., 2009. Prospective cognition in animals. Behav. Process. 80, 314–324.CrossRefGoogle Scholar
  112. Roberts, W.A., 2012. Evidence for future cognition in animals. Learn. Motiv. 43, 169–180.CrossRefGoogle Scholar
  113. Roberts, W.A., Feeney, M.C., 2009. The comparative study of mental time travel. Trends Cogn. Sci. 13, 271–277.PubMedCrossRefGoogle Scholar
  114. Rohrbach, C., 1982. Investigation of the Bruce effect in the Mongolian gerbil (Meri-ones unguiculatus). J. Reprod. Fertil. 65, 411–417.PubMedCrossRefGoogle Scholar
  115. Sabau, R.M., Ferkin, M.H., 2013. Food deprivation and restriction during late gestation affect the sexual behavior of postpartum female meadow voles, Microtus pennsylvanicus. Ethology 119, 29–38.CrossRefGoogle Scholar
  116. Salo, A.L., Dewsbury, D.A., 1995. Three experimentsonmate choiceinmeadow voles (Microtus pennsylvanicus). J. Comp. Psychol. 109, 42–46.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Soares, M.J., Diamond, M., 1982. Pregnancy and chin marking in the rabbit, Orycto-lagus cuniculas. Anim. Behav. 30, 941–943.CrossRefGoogle Scholar
  118. Soley, F., Alvarado-Díaz, I., 2011. Prospective thinking in a mustelid? Eira barbara (Carnivora) cache unripe fruits to consume them once ripened. Naturwis-senschaften 98, 693–698.CrossRefGoogle Scholar
  119. Stockley, P., Preston, B.T., 2004. Sperm competition and diversity in rodent copula-tory behaviour. J. Evol. Biol. 17, 1048–1057.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Stopka, P., Janotova, K., Heyrovsky, D., 2007. The advertisement role of major urinary proteins in mice. Physiol. Behav. 91, 667–670.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Stopka, P., MacDonald, D.W., 1998. Signal interchange during mating in the wood mouse (Apodemus sylvaticus): the concept of active and passive signalling. Behaviour 135, 231–249.CrossRefGoogle Scholar
  122. Takahashi, L.K., 1990. Hormonal regulation of sociosexual behavior in female mammals. Neurosci. Biobehav. Rev. 14, 403–413.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Tamarin, R.H., Reich, L.M., Moyer, C.A., 1984. Meadow vole cycles within fences. Can. J. Zool. 62, 1796–1804.CrossRefGoogle Scholar
  124. Temple, J.L., Rissman, E.F., 2000. Brief refeeding restores reproductive readiness in food-restricted female musk shrews (Suncus murinus). Horm. Behav. 38, 21–28.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Thomas, S.A., Kaczmarek, B.K., 2002. Scent-marking behaviourbymale prairie voles, Microtus ochrogaster, in response to the scent of opposite- and same-sex con-specifics. Behav. Process. 60, 27–33.CrossRefGoogle Scholar
  126. Trivers, R.L., 1972. Parental investment and sexual selection. In: Campbell, B. (Ed.), Sexual Selection and the Descent of Man: 1871–1971. Aldine, Chicago, pp. 136–179.Google Scholar
  127. Valone, T.J., 2007. From eavesdropping on performance to copying the behavior of others: a review of public information use. Behav. Ecol. Sociobiol. 62, 1–14.CrossRefGoogle Scholar
  128. van Noordwijk, M.A., van Schaik, C.P., 2000. Reproductive patterns in eutherian mammals: adaptations against infanticide? In: van Schaik, C.P., Janson, C.H. (Eds.), Infanticide by males and its implications. Cambridge University Press, Cambridge, UK, pp. 322–360.Google Scholar
  129. Vaughn, A.A., delBarco-Trillo, J., Ferkin, M.H., 2008. Sperm investment in male meadow voles is affected by the condition of the nearby male conspecifics. Behav. Ecol. 19, 1159–1164.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Vaughn, A.A., Ferkin, M.H., 2011. The presence and number of male competitor’s scent marks and female reproductive state affect the response of male meadow voles to female conspecifics’ odours. Behaviour 148, 927–943.CrossRefGoogle Scholar
  131. Vlautin, C.T., Ferkin, M.H., 2012. The influence of predator and conspecific odor on sex differences in path choice in meadow voles. Behaviour 149, 133–152.CrossRefGoogle Scholar
  132. Vlautin, C.T., Hobbs, N.J., Ferkin, M.H., 2010. Male and female meadow voles, Microtus pennsylvanicus, differ in their responses to heterospecific/conspecific over-marks. Ethology 116, 797–805.Google Scholar
  133. Voltura, M.B., Wunder, B.A., 1998. Effects of ambient temperature, diet quality, and food restriction on body composition dynamics of the prairie vole, Microtus ochrogaster. Physiol. Zool. 71, 321–328.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wade, G.N., Schneider, J.E., 1992. Metabolic fuels and reproduction in female mammals. Neurosci. Biobehav. Rev. 16, 235–272.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wade, G.N., Schneider, J.E., Li, H.Y., 1996. Control of fertility by metabolic cues. Am. J. Physiol. 270, E1–E19.CrossRefGoogle Scholar
  136. Witt, D.M., Carter, C.S., Chayer, R., Adams, K., 1990. Patterns of behaviour during postpartum oestrus in prairie voles, Microtus ochrogaster. Anim. Behav. 39, 528–534.CrossRefGoogle Scholar
  137. Wolff, J.O., 1993. Why are female small mammals territorial? Oikos 68, 364–370.CrossRefGoogle Scholar
  138. Wolff, J.O., Mech, S.G., Thomas, S.A., 2002. Scent marking in female prairie voles: a test of alternative hypotheses. Ethology 108, 483–494.CrossRefGoogle Scholar
  139. Woodward, R.L., Bartos, K., Ferkin, M.H., 2000. Meadow voles (Microtus pennsylvan-icus) and prairie voles (M. ochrogaster) differ in their responses to over-marks from opposite- and same-sex conspecifics. Ethology 106, 979–992.Google Scholar
  140. Woodward, R.L., Schmick, M.K., Ferkin, M.H., 1999. Response of prairie voles, Microtus ochrogaster (Rodentia, Arvicolidae), to scent over-marks of two same-sex conspecifics: a test of the scent-masking hypothesis. Ethology 105, 1009–1017.CrossRefGoogle Scholar
  141. Yahr, P., 1983. Hormonal influences on territorial marking behavior. In: Svare, B.B. (Ed.), Hormones and Aggressive Behavior. Plenum, New York, pp. 145–175.CrossRefGoogle Scholar
  142. Zhao, Z.-J., Cao, J., 2009. Plasticity in energy budget and behavior in Swiss mice and striped hamsters under stochastic food deprivation and refeeding. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 154, 84–91.CrossRefGoogle Scholar
  143. Ziegler, T.E., Epple, G., Snowdon, C.T., Porter, T.A., Belcher, A.M., Küderling, I., 1993. Detection of the chemical signals of ovulation in the cotton-top tamarin, Sagui-nus oedipus. Anim. Behav. 45, 313–322.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  1. 1.Department of Biological SciencesThe University of MemphisMemphisUSA
  2. 2.Javier delBarco-TrilloConsejo Superior de Investigaciones Científicas, Museo Nacional de Ciencias NaturalesMadridSpain

Personalised recommendations