Advertisement

Mammalian Biology

, Volume 79, Issue 1, pp 9–16 | Cite as

Low scaling of a life history variable: Analysing eutherian gestation periods with and without phylogeny-informed statistics

  • Marcus ClaussEmail author
  • Marie T. Dittmann
  • Dennis W. H. Müller
  • Philipp Zerbe
  • Daryl Codron
Original Investigation

Abstract

Traditionally, biological times (gestation period, longevity) are proposed to scale to body mass M as M0.25. Although phylogeny-informed statistics have become widespread, it is still sometimes assumed that in datasets comprising a very large number of species, analyses that do not and that do account for phylogeny will yield similar results. Here we show, in a large dataset on gestation period length in eutherian mammals (1214 species from 20 orders), that the allometric scaling exponent is about twice as high using conventional statistics (ordinary least squares OLS, M0.18–020) as when using phylogenetic generalised least squares (PGLS, M007-010), indicating that among closely related taxa, the scaling of gestation is much lower than generally assumed. This matches the well-known absence of scaling among different-sized breeds of domestic animal species, and indicates that changes in M must be more related to changes in development speed rather than development time among closely related species, which has implications for interpreting life history-consequences of insular dwarfism and gigantism. Only when allowing just one species per order (simulated in 100 randomised datasets of n = 20 species across 20 orders) is 0.25 included in the scaling exponent confidence interval in both OLS and PGLS. Differences in scaling at different taxonomic levels in comparative datasets may indicate evolutionary trends where successive taxonomic groups compete by fundamental variation in organismal design not directly linked to changes in M. Allometries then do not necessarily represent universal scaling rules, but snapshots of evolutionary time that depend on diversification and extinction events before the picture was taken. It is either by analysing subsets separately, or by using PGLS in large datasets, that the underlying relationships with M can then be unveiled.

Keywords

Metabolic theory of ecology Reproduction Evolution Allometry Mammal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoah, EA, Gelaye, S., Guthrie, P., Rexroad, C.E., 1996. Breeding season and aspects of reproduction of female goats. J. Anim. Sci. 74, 723–728.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andersen, H., Plum, M., 1965. Gestation length and birth weight in cattle and buffaloes: a review. J. Dairy Sci. 48, 1224–1235.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baker, R.H., 2002. Comparative methods. In: DeSalle, R., Giribet, G., Wheeler, W. (Eds.), Techniques in Molecular Systematics and Evolution. Birkhäuser Verlag, Basel, pp. 146–161.CrossRefGoogle Scholar
  4. Benton, M.J., Csiki, Z., Grigorescu, D., Redelstorff, R., Sander, P.M., Stein, K., Weishampel, D.B., 2010. Dinosaurs and the island rule: the dwarfed dinosaurs from Hateg Island. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 438–454.CrossRefGoogle Scholar
  5. Bernstein, R.M., 2010. The big and the small of it: how body size evolves. Yearb. Phys. Anthropol. 53, 46–62.CrossRefGoogle Scholar
  6. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A., 2007. The delayed rise of present-day mammals. Nature 446, 507–512.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L, Purvis, A., 2008. Corrigendum: The delayed rise of present-day mammals. Nature 456, 274.CrossRefGoogle Scholar
  8. Bonner, J.T., 2006. Why Size Matters. Princeton University Press, Princeton.Google Scholar
  9. Bos, H., Van der Mey, G.J.W., 1980. Length of gestation periods of horses and ponies belonging to different breeds. Livest. Prod. Sci. 7, 181–187.CrossRefGoogle Scholar
  10. Bradford, G.E., Hart, R., Quirke, J.F., Land, R.B., 1972. Genetic control of the duration of gestation in sheep. J. Reprod. Fertil. 30, 459–463.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Towards a metabolic theory of ecology. Ecology 85, 1771–1789.CrossRefGoogle Scholar
  12. Brown, J.H., Sibly, R.M., Kodric-Brown, A., 2012. Introduction: metabolism as the basis for a theoretical unification of ecology. In: Sibly, R.M., Brown, J.H., Kodric-Brown, A. (Eds.), Metabolic Ecology. A Scaling Approach. Wiley-Blackwell, Chichester, UK, pp. 1–6.Google Scholar
  13. Calder, W.A., 1984. Size, Function, and Life History. Harvard University Press, Cambridge, MA.Google Scholar
  14. Capellini, I., Venditi, C, Barton, R.A., 2010. Phylogenyand metabolic scaling in mammals. Ecology 91, 2783–2793.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Carvalho, P., Diniz-Filho, J., Bini, L., 2006. Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts. Evol. Ecol. 20, 591–602.CrossRefGoogle Scholar
  16. Crew, F.A.E., 1923. The significance of an achondroplasia-like condition met with in cattle. Proc. R. Soc. Lond. B 95, 228–255.CrossRefGoogle Scholar
  17. Dirks, W., Bromage, T.G., Agenbroad, L.D., 2012. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quatern. Int. 255, 79–85.CrossRefGoogle Scholar
  18. Dubman, E., Collard, M., Mooers, A.Ø., 2012. Evidence that gestation duration and lactation duration are coupled traits in primates. Biol. Lett. 8, 998–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Egset, C.K., ansen, T.F., Le Rouzic, A., Bolstad, G.H., Rosenqvist, G., Pélabon, C, 2012. Artificial selection on allometry: change in elevation but not slope. J. Evol. Biol. 25, 938–948.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Freckleton, R.P., Harvey, P.H., Pagel, M., 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Fritz, J., Hummel, J., Kienzle, E., Arnold, C, Nunn, C, Clauss, M., 2009. Comparative chewing efficiency in mammalian herbivores. Oikos 118, 1623–1632.CrossRefGoogle Scholar
  22. Geist, V., 1966. The evolution of horn-like organs. Behaviour 27, 175–214.CrossRefGoogle Scholar
  23. Grange, S., Duncan, P., 2006. Bottom-up and top-down processes in African ungulate communities: resources and predation acting on the relative abundance of zebra and grazing bovids. Ecography 29, 899–907.CrossRefGoogle Scholar
  24. Grange, S., Duncan, P., Gaillard, J.-M., Sinclair, A.R.E., Gogan, P.J.P., Packer, C, Heribert, H., East, M., 2004. What limits the Serengeti zebra population? Oecologia 140, 523–532.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hamilton, M.J., Davidson, A.D., Sibly, R.M., Brown, J.H., 2011. Universal scaling of production rates across mammalian lineages. Proc. R. Soc. Lond. B 278, 560–566.CrossRefGoogle Scholar
  26. Harvey, P.H., Pagel, M.D., 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
  27. Hennemann, W.W., 1984. Intrinsic rates of natural increase of altricial and precocial eutherian mammals: the potential price of precociality. Oikos 43, 363–368.CrossRefGoogle Scholar
  28. Jollans, J.L., 1960. A study of the West African dwarf sheep in the closed forest zone of Ashanti. West Afr. J. Biol. Chem. 3, 74–80.Google Scholar
  29. Jones, K.E., Purvis, A., 1997. An optimum body size for mammals? Comparative evidence from bats. Funct. Ecol. 11, 751–756.CrossRefGoogle Scholar
  30. Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O’Dell, J., Orme, CD., Safi, K., Sechrest, W., Boakes, E.H., Carbone, C, Connolly, C, Cutts, M.J., Foster, J.K., Grenyer, R., Habib, M., Plaster, C.A., Price, S.A., Rigby, E.A., Rist, J., Teacher, A., Bininda-Emonds, O.R.P., Gittleman, J.L., Mace, G.M., Purvis, A., 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (Ecological Archives E2090–2184).CrossRefGoogle Scholar
  31. Jordana, X., Köhler, M., 2011. Enamel microstructure in the fossil bovid Myotragus balearicus (Majorca, Spain): implications for life-history evolution of dwarf mammals in insular ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 59–66.CrossRefGoogle Scholar
  32. Jordana, X., Marín-Moratalla, N., DeMiguel, D., Kaiser, T.M., Köhler, M., 2012. Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals. Proc. R. Soc. Lond. B 279, 3339–3346.CrossRefGoogle Scholar
  33. Kihlström, J.E., 1972. Period of gestation and body weight in some placental mammals. Comp. Biochem. Physiol. A 43, 673–679.PubMedCrossRefPubMedCentralGoogle Scholar
  34. King Wilson, W., Dudley, F.J., 1952. The duration of gestation in rabbit breeds and crosses. J. Genet. 50, 384–391.CrossRefGoogle Scholar
  35. Kirkwood, J.K., 1985. The influence of size on the biology of the dog. J. Small Anim. Pract. 26, 97–110.CrossRefGoogle Scholar
  36. Köhler, M., Moyà-Solà, S., 2009. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc. Natl. Acad. Sci. U. S. A. 106, 20354–20358.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kozlowski, J., Weiner, J., 1997. Interspecific allometries are by-products of body size optimization. Am. Nat. 149, 352–380.CrossRefGoogle Scholar
  38. Lindstedt, S.L, Calder, W.A.I., 1981. Body size, physiological time and longevity of homeothermic animals. Q. Rev. Biol. 56, 1–16.CrossRefGoogle Scholar
  39. Martin, R.D., MacLarnon, A.M., 1985. Gestation period, neonatal size and maternal investment in placental mammals. Nature 313, 220–223.CrossRefGoogle Scholar
  40. Martin, R.D., Genoud, M., Hemelrijk, C.K., 2005. Problems of allometric scaling analysis: examples from mammalian reproductive biology. J. Exp. Biol. 208, 1731–1747.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Meiri, S., Raia, P., 2010. Reptilian all the way? Proc. Natl. Acad. Sci. U. S. A. 107, E27.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Müller, D.W.H., Codron, D., Werner, J., Fritz, J., Hummel, J., Griebeler, E.M., Clauss, M., 2012. Dichotomy of eutherian reproduction and metabolism. Oikos 121, 102–115.CrossRefGoogle Scholar
  43. Müller, D.W.H., Codron, D., Meloro, C, Munn, A., Schwarm, A., Hummel, J., Clauss, M., 2013. Assessing the Jarman-Bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp. Biochem. Physiol. A 164, 129–140.CrossRefGoogle Scholar
  44. Müller, D.W.H., Zerbe, P., Codron, D., Clauss, M., Hatt, J.-M., 2011. A long life among ruminants: giraffids and other special cases. Schweiz. Arch. Tierheilkd. 153, 515–519.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Nunn, C.L., 2011. The Comparative Approach in Evolutionary Anthropology and Biology. University of Chicago Press, Chicago.CrossRefGoogle Scholar
  46. Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., 2010. Caper: comparative analyses of phylogenetics and evolution in R. R package version 04/r71. See http://wwwR-ForgeR-projectorg/projects/caper/Google Scholar
  47. Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–884.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Palombo, M.R., 2007. How can endemic proboscideans help us understand the “island rule”? A case study of Mediterranean islands. Quatern. Int. 169/170, 105–124.Google Scholar
  49. Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Peters, R.H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  51. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Development Core Team, 2011. Nlme: linear and nonlinear mixed effects models. R package version 31–102. Available at http://cranrprojectorg/web/packages/nlme/citationhtmlGoogle Scholar
  52. Raia, P., Barbera, C, Conte, M., 2003. The fast life of a dwarfed giant. Evol. Ecol. 15, 293–312.CrossRefGoogle Scholar
  53. Revell, L.J., 2010. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329.CrossRefGoogle Scholar
  54. Revell, L.J., 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223.CrossRefGoogle Scholar
  55. Ricklefs, R.E., Starck, J.M., 1996. Applications of phylogenetically independent contrasts: a mixed progress report. Oikos 77, 167–172.CrossRefGoogle Scholar
  56. Roth, V.L., 1990. Island dwarf elephants: a case study in body mass estimatio and ecological inference. In: Damuth, J., MacFadden, J.B. (Eds.), Body Size in Mammalian Paleobiology. Cambridge University Press, New York, pp. 51–179.Google Scholar
  57. Roth, V.L, 1992. Inferences from allometry and fossils: dwarfing elephant on islands. In: Futuyma, D., Antonovics, J. (Eds.), Oxford Surveys in Evolutionary Biology, vol. 8. Oxford University Press, New York, pp. 259–288.Google Scholar
  58. Sander, P.M., Klein, N., Buffetaut, E.,Cuny, G., Suteethorn, V., Le Loeuff, J., 2004. Adaptive radiation in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through acceleration. Organ. Divers. Evol. 4, 165–173.CrossRefGoogle Scholar
  59. Sander, P.M., Mateus, O., Laven, T., Knötschke, N., 2006. Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature 441, 739–741.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Schmidt-Nielsen, K., 1984. Scaling: Why is Animal Size so Important? Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  61. Sibly, R.M., 2012. Life history. In: Sibly, R.M., Brown, J.H., Kodric-Brown, A. (Eds.), Metabolic Ecology. A Scaling Approach. Wiley-Blackwell, Chichester, UK, pp. 57–66.CrossRefGoogle Scholar
  62. Sibly, R.M., Brown, J.H., Kodric-Brown, A. (Eds.), 2012. Metabolic Ecology. A Scaling Approach. Wiley-Blackwell, Chichester, UK.Google Scholar
  63. Sieg, A.E., O’Connor, M.P., McNair, J.N., Grant, B.W., Agosta, S.J., Dunham, A.E., 2009. Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am. Nat. 174, 720–733.Google Scholar
  64. Stein, K., Csiki, Z., Curry Rogers, K., Weishampel, D.B., Redelstorff, R., Carballido, J.L., Sander, P.M., 2010. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proc. Natl. Acad. Sci. U. S. A. 107, 9258–9263.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Team RDC, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0 http://wwwR-projectorg/Google Scholar
  66. Western, D., 1979. Size, life history and ecology in mammals. Afr. J. Ecol. 17, 185–204.CrossRefGoogle Scholar
  67. White, C.R., Blackburn, T.M., Seymour, R.S., 2009. Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63, 2658–2667.PubMedCrossRefPubMedCentralGoogle Scholar
  68. White, E.P., Xiao, X., Isaac, N.J.B., Sibly, R.M., 2012. Methodological tools. In: Sibly, R.M., Brown, J.H., Kodric-Brown, A. (Eds.), Metabolic Ecology. A Scaling Approach. Wiley-Blackwell, Chichester, UK, pp. 9–20.Google Scholar
  69. Zerbe, P., Clauss, M., Codron, D., Bingaman Lackey, L., Rensch, E., Streich, W.J., Hatt, J.M., Müller, D.H.W., 2012. Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history. Biol. Rev. 87, 965–990.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Marcus Clauss
    • 1
    Email author
  • Marie T. Dittmann
    • 2
  • Dennis W. H. Müller
    • 1
    • 3
  • Philipp Zerbe
    • 1
    • 4
  • Daryl Codron
    • 1
    • 5
  1. 1.Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
  2. 2.Institute of Plant, Animal and Agroecosystem SciencesSwiss Federal Institute of TechnologyZurichSwitzerland
  3. 3.National Park ‘Bavarian Forest’GrafenauGermany
  4. 4.Section for Small Animal Reproduction, Clinic for Animal Reproduction, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
  5. 5.Florisbad Quaternary ResearchNational MuseumBloemfonteinSouth Africa

Personalised recommendations