Mammalian Biology

, Volume 78, Issue 2, pp 94–103 | Cite as

Natural history, physiology and energetic strategies of Asellia tridens (Chiroptera)

  • Eran AmichaiEmail author
  • Eran Levin
  • Noga Kronfeld-Schor
  • Uri Roll
  • Yoram Yom-Tov
Original Investigation


We used radio-telemetry, observations and physiological measurements to study the basic biology and energetic strategies of Asellia tridens in northern Israel from 2009 to 2010. Between late May and early November, the bats occupied abandoned man-made structures in this area. Parturition occurred between late June and mid-July, and juveniles were independent by late August. A. tridens foraged near the roost in a vegetation-rich, cluttered background environment, catching insects flying close to vegetation. Its diet was diverse, with Coleoptera, Heteroptera, Diptera and Lepidoptera being the main diet components. During summer, males and females differed in their foraging patterns and energetic strategies: Lactating females departed for more frequent foraging bouts than males, and maintained euthermy throughout the day, while males became torpid on a daily basis.


Chiroptera Foraging pattern Energetic strategies Reproductive cycle Torpor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldridge, H.D.J.N., Brigham, R.M., 1988. Load carrying and maneuverability in an insectivorous bat: a test of the 5% “Rule” of radio-telemetry. J. Mammal. 69, 379–382.CrossRefGoogle Scholar
  2. Bates, D., Maechler, M., Bolker, B., 2011. lme4: Linearmixed-effects Models Using S4 Classes. R-package Version 0.999375-42.
  3. Baudinette, R.V., Churchill, S.K., Christian, K.A., Nelson, J.E., Hudson, P.J., 2000. Energy, water balance and the roost microenvironment in three Australian cavedwelling bats (Microchiroptera). J. Comp. Physiol. B 170, 439–446.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bontadina, F., Schofield, H., Naef-Daenzer, B., 2002. Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland.J. Zool. 258, 281–290.CrossRefGoogle Scholar
  5. BÖRger, L., Franconi, N., De Michele, G., Gantz, A., Meschi, F., Manica, A., Lovari, S., Coulson, T.I.M., 2006. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75, 1393–1405.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Daniel, S., Korine, C., Pinshow, B., 2010. The use of torpor in reproductive female Hemprich’s long-eared bats (Otonycteris hemprichii). Physiol. Biochem. Zool. 83, 142–148.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Dausmann, K.H., 2005. Measuring body temperature in the field – evaluation of external vs. implanted transmitters in a small mammal. J. Therm. Biol. 30, 195–202.CrossRefGoogle Scholar
  8. Dietz, C., 2007. Aspects of Ecomorphology in the Five European Horseshoe bats (Chiroptera: Rhinolophidae) in the Area of Sympatry, Biology. University of Tubingen, Tubingen.Google Scholar
  9. Dietz, M., Kalko, E., 2006. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B 176, 223–231.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Esbérard, C., Bergallo, H., 2010. Foraging activity of the free-tailed bat Molossus molossus (Chiroptera; Molossidae) in Southeastern Brazil. Braz. J. Biol. 70, 1011–1014.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Feldman, R., 1998. The Insectivorous Bats (Microchiroptera) of the Dead Sea Area: Food Habits and Habitat Use, Zoology. Tel-Aviv University, Tel-Aviv.Google Scholar
  12. Feldman, R., Whitaker, J.O.J., Yom-Tov, Y., 2000. Dietary composition and habitat use in a desert insectivorous bat community in Israel. Acta Chiropterologica 2, 15–22.Google Scholar
  13. Fenton, M.B., Bernard, E., Bouchard, S., Hollis, L., Johnston, D.S., Lausen, C.L., Ratcliffe, J.M., Riskin, D.K., Taylor, J.R., Zigouris, J., 2001. The bat fauna of Lamanai, Belize: roosts and trophic roles. J. Trop. Ecol. 17, 511–524.CrossRefGoogle Scholar
  14. Geiser, F., 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Geiser, F., Stawski, C., 2011. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integr. Comp. Biol. 51, 337–348.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gittleman, J.L., Thompson, S.D., 1988. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875.CrossRefGoogle Scholar
  17. Grinevitch, L., Holroyd, S.L., Barclay, R.M.R., 1995. Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. J. Zool. 235, 301–309.CrossRefGoogle Scholar
  18. Gustafson, A.W., Shemesh, M., 1976. Changes in plasma testosterone levels during the annual reproductive cycle of the hibernating bat, Myotis lucifugus lucifugus with a survey of plasma testosterone levels in adult male vertebrates. Biol. Reprod. 15, 9–24.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gustafson, Y., Schnitzler, H.U., 1979. Echolocation and obstacle avoidance in the Hipposiderid bat Asellia tridens. J. Comp. Physiol. 131, 161–167.CrossRefGoogle Scholar
  20. Hosken, D.J., Blackberry, M.A., Stewart, T.B., Stucki, A.F., 1998. The male reproductive cycle of three species of Australian vespertilionid bat. J. Zool. 245, 261–270.CrossRefGoogle Scholar
  21. Jones, G., Morton, M., Hughes, P.M., Budden, R.M., 1993. Echolocation, flight morphology and foraging strategies of some West African Hipposiderid bats. J. Zool. 230, 385–400.CrossRefGoogle Scholar
  22. Kulzer, E., 1965. TemperaturregulationbeiFledermausen (Chiroptera) ausverschiedenKlimazonen. Z. Vergl. Physiol. 50, 1–34.CrossRefGoogle Scholar
  23. Kulzer, E., Nelsen, J.E., McKean, J.L., Ohres, P., 1970. Untersuchungen uber die Temperaturregulation australischer Fledermause (Microchiroptera). Z. Vergl. Physiol. 69, 426–451.CrossRefGoogle Scholar
  24. Kunz, T.H., 1988. Ecological and Behavioral Methods for the Study of Bats. Smithsonian Institute, Washington, DC.Google Scholar
  25. Kurta, A., Bell, G.P., Nagy, K.A., Kunz, T.H., 1989. Energeticsof pregnancy and lactation in free ranging little brown bats (Myotis lucifugus). Physiol. Zool. 62, 804–818.CrossRefGoogle Scholar
  26. Levy, O., Dayan, T., Kronfeld-Schor, N., 2011a. Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiol. Biochem. Zool. 84, 175–184.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Levy, O., Dayan, T., Kronfeld-Schor, N., 2011b. Interspecific competition and torpor in golden spiny mice: two sides of the energy-acquisition coin. Integr. Comp. Biol. 51, 441–448.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Liu, J.N., Karasov, W.H., 2011. Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposiderosterasensis, in subtropical Taiwan. J. Comp. Physiol. B 181, 125–135.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lovegrove, B.G., 2000. Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier, G., Klingenspor, M. (Eds.), Life in the Cold: Eleventh International Hibernation Symposium. Springer-Verlag, Berlin, Jungholz, Austria, pp. 29–40.Google Scholar
  30. Meenakumari, K.J., Krishna, A., 2005. Delayed embryonic development in the Indian short-nosed fruit bat. Cynopterus Sphinx. Zool. 108, 131–140.CrossRefGoogle Scholar
  31. Mendelssohn, H., Yom-Tov, Y., 1999. Fauna Palestina. Keterpress Enterprises, Jerusalem.Google Scholar
  32. Norberg, U.M., Rayner, J.M.V., 1987. Ecological morphology and flight in bats (Mammalia, Chiroptera) – wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B 316, 337–419.CrossRefGoogle Scholar
  33. Nowak, R.M., 1994. Walker’s Bats of the World. The John Hopkins University Press, Baltimore.Google Scholar
  34. Qumsiyeh, M.B., 1996. Mammals of the Holy Land. Texas Tech University Press, Lubbock.Google Scholar
  35. Russo, D., Jones, G., Migliozzi, A., 2002. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implications for conservation. Biol. Conserv. 107, 71–81.CrossRefGoogle Scholar
  36. Rydell, J., Entwistle, A., Racey, P.A., 1996. Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos 76, 243–252.CrossRefGoogle Scholar
  37. Taylor, R., Oneill, M., 1988. Summer activity patterns of insectivorous bats and their prey in Tasmania. Wildlife Res. 15, 533–539.CrossRefGoogle Scholar
  38. Verboom, B., Huitema, H., 1997. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecol. 12, 117–125.CrossRefGoogle Scholar
  39. Whitaker, J.O., Yom-Tov, Y., 2002. The dietofsome insectivorous bats from northern Israel. Mammal. Biol. 67, 378–380.CrossRefGoogle Scholar
  40. Whitaker, J.O.J., 1988. Food habits and analysis of insectivorous bats. In: Kunz, T.H. (Ed.), Ecological and Behavioural Methods for the Study of Bats. Smithsonian Institute, Washington, DC, pp. 171–189.Google Scholar
  41. Yom-Tov, Y., Tchernov, E., 1988. Zoogeography of Israel. In: The Zoogeography of Israel. Dr. W. Junk Publishers, Dordrecht, Netherlands, pp. 1–6, 536.Google Scholar
  42. Zahn, A., Bauer, S., Kriner, E., Holzhaider, J., 2010. Foraging habitats of Myotis emarginatus in Central Europe. Eur. J. Wildlife. Res. 56, 395–400.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2013

Authors and Affiliations

  • Eran Amichai
    • 1
    Email author
  • Eran Levin
    • 1
  • Noga Kronfeld-Schor
    • 1
  • Uri Roll
    • 1
  • Yoram Yom-Tov
    • 1
  1. 1.Department of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations