Mammalian Biology

, Volume 78, Issue 1, pp 10–20 | Cite as

Magnetic alignment in mammals and other animals

  • Sabine BegallEmail author
  • E. Pascal Malkemper
  • Jaroslav Červený
  • Pavel Němec
  • Hynek Burda


Magnetic alignment (MA) constitutes the simplest directional response to the geomagnetic field. In contrast to magnetic compass orientation, MA is not goal directed and represents a spontaneous, fixed directional response. Because animals tend to align their bodies along or perpendicular to the magnetic field lines, MA typically leads to bimodal or quadrimodal orientation, although there is also growing evidence for a fixed unimodal orientation not necessarily coinciding with the magnetic cardinal directions. MA has been demonstrated in diverse animals including insects, amphibians, fish, and mammals. Alignment can be expressed by animals during resting as well as on the move (e.g. while grazing, hunting, feeding, etc.). Here, we briefly survey characteristic features and classical examples of MA and review the current knowledge about the occurrence of MA in mammals. In addition, we summarize what is known about mechanisms underlying MA and discuss its prospective biological functions. Finally, we highlight some physiological effects of alignment along the magnetic field axes reported in humans. We argue that the phenomenon of MA adds a new paradigm that can be exploited for investigation of magnetoreception in mammals.


Cattle Deer Fox Horse Magnetoreception 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Able, K.P., Gergits, W., 1985. Human navigation: attempts to replicate Baker’s displacement experiment. Magnetite biomineralization and magnetoreception in organisms. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 569–572.CrossRefGoogle Scholar
  2. Altmann, G., 1981. Untersuchung zur Magnetotaxis der Honigbiene, Apis mellifica L. Anz. Schädlingsk. 54, 177–179.Google Scholar
  3. Baker, R.R., 1980. Goal orientation by blindfolded humans after long-distance displacement: possible involvement of a magnetic sense. Science 210, 555–557.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baker, R.R., 1987. Human navigation and magnetoreception: the Manchester experiments do replicate. Anim. Behav. 35, 691–704.CrossRefGoogle Scholar
  5. Baker, R.R., Mather, J.G., Kennaugh, J.H., 1983. Magnetic bones in human sinuses. Nature 301, 78–80.CrossRefGoogle Scholar
  6. Batschelet, E., 1981. Circular Statistics in Biology. Academic Press, London, 372 pp.Google Scholar
  7. Bauer, G.B., Fuller, M., Perry, A., Dunn, J.R., Zoeger, J., 1985. Magnetoreception and biomineralization of magnetite in cetaceans. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 489–507.CrossRefGoogle Scholar
  8. Beason, R.C., 2005. Mechanisms of magnetic orientation in birds. Integr. Comp. Biol. 45, 565–573.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Becker, G., 1963. Ruheeinstellung nach der Himmelsrichtung, eine Magnetfeldori-entierung bei Termiten. Naturwissenschaften 50, 455.Google Scholar
  10. Becker, G., 1964. Reaktion von Insekten auf Magnetfelder, elektrische Felder und atmospherics. Z. Angew. Entomol. 54, 75–88.CrossRefGoogle Scholar
  11. Becker, G., 1974. Einfluß des Magnetfelds auf das Richtungsverhalten von Goldfischen. Naturwissenschaften 61, 220–221.PubMedCrossRefGoogle Scholar
  12. Becker, G., 1971. Magnetfeld-Einfluß auf den Galeriebau von Termiten. Naturwissenschaften 58, 60.Google Scholar
  13. Becker, G., 1976. Reaction of termites to weak alternating magnetic fields. Naturwissenschaften 63, 201–202.CrossRefGoogle Scholar
  14. Becker, G., Speck, U., 1964. Untersuchungen über die Magnetfeldorientierung von Dipteren. Z. Vergl. Physiol. 49, 301–340.CrossRefGoogle Scholar
  15. Begall, S.,Červený, J., Neef, J., Vojtech, O., Burda, H., 2008. Magnetic alignmentingraz-ing and resting cattle and deer. Proc. Natl. Acad. Sci. U.S.A. 105, 13451–13455.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Begall, S., Burda, H., Červený, J., Gerter, O., Neef-Weisse, J., Neˇmec, P., 2011. Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J. Comp. Phys. A 197, 1127–1133.CrossRefGoogle Scholar
  17. Bellini, S., 2009a. On a unique behavior of freshwater bacteria. Chin. J. Oceanol. Limnol. 27, 3–5.CrossRefGoogle Scholar
  18. Bellini, S., 2009b. Further studies on magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 6–12.CrossRefGoogle Scholar
  19. Benhamou, S., Sauvé, J.-P., Bovet, P., 1990.Spatial memoryinlarge scale movements: efficiency and limitation of the egocentric coding process. J. Theoret. Biol. 145, 1–12.CrossRefGoogle Scholar
  20. Blakemore, R., 1975. Magnetotactic bacteria. Science 190, 377–379.PubMedCrossRefGoogle Scholar
  21. Blakemore, R.P., Frankel, R.B., Kalmijn, A.J., 1980. South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286, 384–385.CrossRefGoogle Scholar
  22. Burda, H., Beiles, A., Marhold, S., Simson, S., Nevo, E., Wiltschko, W., 1991. Magnetic orientation in subterranean mole rats of the superspecies Spalax ehrenbergi: experiments, patterns and memory. Isr. J. Zool. 37, 182–183.Google Scholar
  23. Burda, H., Begall, S., Červený, J., Neef, J., Němec, P., 2009. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl. Acad. Sci. U.S.A. 106, 5708–5713.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Burda, H., Marhold, S., Westenberger, T., Wiltschko, W., Wiltschko, R., 1990. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae, Rodentia). Experientia 46, 528–530.PubMedCrossRefGoogle Scholar
  25. Burger, T., Lucova, M., Moritz, R., Oelschläger, H.H.A., Druga, R., Burda, H., Wiltschko, R., Wiltschko, W., Němec, P., 2010. Changing and shielded magnetic fields suppress c-Fos expression in the rodent navigation circuit: does input from the magnetosensory system contribute to internal representation of space? J. Roy. Soc. Interface 7, 1275–1292.CrossRefGoogle Scholar
  26. Calvert, G., Spence, C., Stein, B.E. (Eds.), 2004. The Handbook of Multisensory Processes. The MIT Press, Cambridge, MA, p. 915.Google Scholar
  27. Carrubba, S., Frilot, I., 2007. Evidence of a nonlinear human magnetic sense. Neuro-science 144, 356–367.Google Scholar
  28. Červeny´, J., Begall, S., Koubek, P., Nováková, P., Burda, H., 2011. Directional preference may enhance hunting accuracy in foraging foxes. Biol. Lett. 7, 355–357.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chew, G., Brown, G.E., 1989. Orientation of rainbow trout (Salmo gairdneri)innormal and null magnetic fields. Can. J. Zool. 67, 641–643.CrossRefGoogle Scholar
  30. Cremer-Bartels, G., Krause, K., Kuechle, H., 1983. Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans. Graefes Arch. Clin. Exp. Ophthalmol. 220, 248–252.Google Scholar
  31. Cressey, D., 2008. ‘Magnetic cows’ are visible from space. Nat. News, (25 Aug 2008).
  32. Cuppini, C., Ursino, M., Magosso, E., Rowland, B.A., Stein, B.A., 2010. An emergent model of multisensory integration in superior colliculus neurons. Front. Integr. Neurosci. 4, 1–15.Google Scholar
  33. Deoras, P.J.,1962. Some observations on the termites of Bombay. In: Termites in the Humid Tropics. Proc. New Delhi Symp. 1960. UNESCO, Paris, pp. 101–103.Google Scholar
  34. Deutschlander, M.E., Freake, M.J., Borland, S.C., Phillips, J.B., Madden, R.C., Anderson, L.E., Wilson, B.W., 2003. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim. Behav. 65, 779–786.CrossRefGoogle Scholar
  35. Diebel, C.E., Proksch, R., Green, C.R., Neilson, P., Walker, M.M., 2000. Magnetite defines a vertebrate magnetoreceptor. Nature 406, 299–302.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dommer, D.H., Gazzolo, P.J., Painter, M.S., Phillips, J.B., 2008. Magnetic compass orientation by larval Drosophila melanogaster. J. Insect Physiol. 54, 719–726.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dusenbery, D.B., 1992. Sensory Ecology: How Organisms Acquire and Respond to Information. W.H. Freeman & Co, New York.Google Scholar
  38. Etienne, A.S., Maurer, R., Saucy, F., 1988. Limitationsinthe assessment ofpath dependent information. Behaviour 106, 81–111.CrossRefGoogle Scholar
  39. Fildes, B.N., O’Loughlin, B.J., Bradshaw, J.L., Ewens, W.J., 1984. Human orientation with restricted sensory information: no evidence for magnetic sensitivity. Perception 13, 229–236.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Foley, L.E., Gegear, R.J., Reppert, S.M., 2011. Human cryptochrome exhibits lightdependent magnetosensitivity. Nat. Commun. 2, 356.Google Scholar
  41. Frankel, R.B., 2009. The discovery of magnetotactic/magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 1–2.CrossRefGoogle Scholar
  42. Frankel, R.B., Blakemore, R., De Araujo, F.F.T., Esquivel, D.M.S., Danon, J., 1981. Mag-netotactic bacteria at the geomagnetic equator. Science 212, 1269–1270.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Frankel, R.B., Blakemore, R.P., Wolfe, R.S., 1979. Magnetite in freshwater magneto-tactic bacteria. Science 203, 1355–1356.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gegear, R.J., Casselman, A., Waddell, S., Reppert, S.M., 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gould, J.L., Kirschvink, J.L., Deffeyes, K.S., Brines, M.L., 1980. Orientation of demagnetized bees. J. Exp. Biol. 86, 1–8.Google Scholar
  46. Gould, J.L., 1985. Absence of human homing ability as measured by displacement experiments. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 595–599.CrossRefGoogle Scholar
  47. Gould, J.L., 2008. Animal navigation: the evolution of magnetic orientation. Curr. Biol. 18, 482–484.CrossRefGoogle Scholar
  48. Gould, J.L., Able, K.P., 1981. Human homing: an elusive phenomenon. Science 212, 1061–1063.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Grubb, J.D., Reed, C.L., Bate, S., Garza, J., Roberts Jr., R.J., 2008. Walking reveals trunk orientation bias for visual attention. Percept. Psychophys. 70, 688–696.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hert, J., Jelinek, L., Pekarek, L., Pavlicek, A., 2011. No alignment of cattle along geomagnetic field lines found. J. Comp. Physiol. A 197, 677–682.CrossRefGoogle Scholar
  51. Hetem, R.S., Strauss, W.M., Heusinkveld, B.G., de Bie, S., Prins, H.H.T., van Wieren, S.E., 2011. Energy advantages of orientation to solar radiation in three African ruminants. J. Therm. Biol. 36, 452–460.CrossRefGoogle Scholar
  52. Heyers, D., Manns, M., Luksch, H., Güntürkün, O., Mouritsen, H., 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One 9, e937.Google Scholar
  53. Holland, R.A., Thorup, K., Vonhof, M., Cochran, W.W., Wikelski, M., 2006. Bat orientation using Earth’s magnetic field. Nature 444, 653–702.Google Scholar
  54. Holland, R.A., Kirschvink, J.L., Doak, T.G., Wikelski, M., 2008. Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3, e1676.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Holland, R.A., Borissov, I., Siemers, B.M., 2010. A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc. Natl. Acad. Sci. U.S.A. 107, 6941–6945.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hsu, C.-Y., Ko, F.-Y., Li, C.-W., Fann, K., Lue, J.-T., 2007. Magnetoreception system in honeybees (Apis mellifera). PLoS One 2, e395.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kalmijn, A.J., Blakemore, R.P., 1978. The magnetic behavior of mud bacteria. In: Schmidt-Koenig, K., Keeton, W.T. (Eds.), Animal Migration, Navigation and Homing. Springer-Verlag, Berlin, 354 pp.Google Scholar
  58. Kimchi, T., Etienne, A.S., Terkel, J., 2004. A subterranean mammal uses the magnetic compass for path integration. Proc. Natl. Acad. Sci. U.S.A. 101, 1105–1109.Google Scholar
  59. Kimchi, T., Terkel, J., 2001. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J. Exp. Biol. 204, 751–758.PubMedPubMedCentralGoogle Scholar
  60. Kirschvink, J.L., Kobayashi-Kirschvink, A., Woodford, B.J., 1992. Magnetite biomin-eralization in the human brain. Proc. Natl. Acad. Sci. U.S.A. 89, 7683–7687.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kirschvink, J.L., Winklhofer, M., Walker, M.M., 2010. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. Roy. Soc. Interface 7, 179–191.CrossRefGoogle Scholar
  62. Lindauer, M., Martin, H., 1968. Die Schwereorientierung der Bienen unter dem Ein-fluß des Erdmagnetfeldes. Zeitschr. Vergl. Physiol. 60, 219–243.CrossRefGoogle Scholar
  63. Marhold, S., Beiles, A., Burda, H., Nevo, E., 2000. Spontaneous directional preference in a subterranean rodent, the blind mole-rat, Spalax ehrenbergi. Folia Zool. 49, 7–18.Google Scholar
  64. Marhold, S., Burda, H., Kreilos, I., Wiltschko, W., 1997a. Magnetic orientation in com-monmole-ratsfromZambia.In:OrientationandNavigation-Birds, Humansand Other Animals. Royal Institute of Navigation, Oxford, pp. 5.1–5.9.Google Scholar
  65. Marhold, S., Wiltschko, W., Burda, H., 1997b. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423.CrossRefGoogle Scholar
  66. Martin, H., Lindauer, M., 1977. Der Einfluß des Erdmagnetfeldes auf die Schwereori-entierung der Honigbiene (Apis mellifica). J. Comp. Physiol. 122, 145–187.CrossRefGoogle Scholar
  67. Mather, J.G., Baker, R.R., 1981. Magnetic sense of direction in woodmice for route-based navigation. Nature 291, 152–155.CrossRefGoogle Scholar
  68. Moritz, R.E., Burda, H., Begall, S., Neˇmec, P., 2007. Magnetic compass: a useful tool underground. In: Begall, S., Burda, H., Schleich, C.E. (Eds.), Subterranean Rodents: News from Underground. Springer Verlag, Heidelberg, pp. 161–174.CrossRefGoogle Scholar
  69. Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., Jarvis, E.D., 2005. Night vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. U.S.A. 102, 8339–8344.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Muheim, R., Jenni, L., Weindler, P., 1999. The orientation behaviour of chaffinches, Fringilla coelebs, caught during active migratory flight, in relation to the sun. Ethology 105, 97–110.CrossRefGoogle Scholar
  71. Muheim, R., Edgar, N.M., Sloan, K.A., Phillips, J.B., 2006. Magnetic compass orientation in C57BL/6J mice. Learn. Behav. 34, 366–373.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Němec, P., Altmann, J., Marhold, S., Burda, H., Oelschläger, H.A., 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Neˇmec, P., Cveková, P., Benada, O., Wielkopolska, E., Olkowicz, S., Turlejski, K., Burda, H., Bennett, N.C., Peichl, L., 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364.CrossRefGoogle Scholar
  74. Oliveriusová, L., Némec, P., Králová, Z., Sedlácˇek F., under review. Magnetic compass orientationintwo strictly subterranean rodents: learnedor species-specific innate directional preference? J. Exp. Biol.Google Scholar
  75. Patzenhauerova, H., Bryja, J., Sumbera, R., 2010. Kinship structure and mating system in a solitary subterranean rodent, the silvery mole-rat. Behav. Ecol. Sociobiol. 64, 757–767.CrossRefGoogle Scholar
  76. Phillips, J.B., 1986. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Phillips, J.B., 1996. Magnetic navigation. J. Theoret. Biol. 180, 309–319.CrossRefGoogle Scholar
  78. Phillips, J.B., Borland, S.C., Freake, M.J., Brassart, J., Kirschvink, J.L., 2002. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914.Google Scholar
  79. Phillips, J.B., Muheim, R., Jorge, P.E., 2010. A behavioral perspective on the biophysics ofthelight-dependentmagnetic compass:alinkbetween directional and spatial perception? J. Exp. Biol. 213, 3247–3255.CrossRefGoogle Scholar
  80. Ritz, T., Adem, S., Schulten, K., 2000. A model for photoreceptor-based magnetore-ception in birds. Biophys. J. 78, 707–718.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ritz, T., Thalau, P., Phillips, J., Wiltschko, R., Wiltschko, W., 2004. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 429, 177–180.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Roonwal, M.L., 1958. Recent work on termite research in India (1947–57). Trans. Bose Res. Inst. 22, 77–100.Google Scholar
  83. Ruhenstroth-Bauer, G., Rüther, E., Reinertshofer, T.H., 1987. Dependence of a sleeping parameter from the N-S or E-W sleeping direction. Z. Naturf. 42c, 1140–1142.Google Scholar
  84. Ruhenstroth-Bauer, G., Günther, W., Hantschk, I., Klages, U., Kugler, J., Peters, J., 1993. Influence of the Earth’s magnetic field on resting and activated EEG mapping in normal subjects. Int. J. Neurosci. 73, 195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sandberg, R., Pettersson, J., Persson, K., 1991. Migratory orientation of free flying robins Erithacus rubecula and pied flycatchers Ficedula hypoleuca: release experiments. Ornis Scand. 22, 1–11.CrossRefGoogle Scholar
  86. Schlegel, P.A., 2007. Spontaneous preferences for magnetic compass direction in the American red-spotted newt, Notophthalmus viridescens (Salamandridae, Urodela). J. Ethol. 25, 177–184.CrossRefGoogle Scholar
  87. Schlegel, P.A., 2008. Magnetic and othernon-visualorientationmechanismsinsome cave and surface urodeles. J. Ethol. 26, 347–359.CrossRefGoogle Scholar
  88. Schlegel, P.A., Renner, H., 2007. Innate preference for magnetic compass direction in the alpine newt, Triturus alpestris (Salamandridae, Urodela)? J. Ethol 25, 185–193.CrossRefGoogle Scholar
  89. Schulten, K., Swenberg, C.E., Weller, A., 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Physikal. Chem. Neue Folge 111, 1–5.CrossRefGoogle Scholar
  90. Semm, P., Nohr, D., Demaine, C., Wiltschko, W., 1984. Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon’s brain. J. Comp. Physiol. A 155, 283–288.CrossRefGoogle Scholar
  91. Semm, P., Demaine, C., 1986. Neurophysiological properties of magnetic cells in the pigeon’s visual system. J. Comp. Physiol. A 159, 619–625.PubMedCrossRefGoogle Scholar
  92. Stapput, K., Thalau, P., Wiltschko, R., Wiltschko, W., 2008. Orientation of birds in total darkness. Curr. Biol. 18, 602–606.PubMedCrossRefGoogle Scholar
  93. Stein, B.E., Meredith, M.A., 1993. The Merging of the Senses. The MIT Press, Cambridge, MA.Google Scholar
  94. Stein, B.E., Stanford, T.R., 2008. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266.PubMedCrossRefGoogle Scholar
  95. Stuchlik, A., Fenton, A.A., Bures, J., 2001. Substratal idiothetic navigation of rats is impaired by removal or devaluation of extramaze and intramaze cues. Proc. Natl. Acad Sci. U.S.A. 98, 3537–3542.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tesch, F., Lelek, A., 1973. Directional behaviour of transplanted stationary and migratory forms of the eel, Anguilla anguilla, in a circular tank. Neth. J. Sea Res. 7, 46–52.CrossRefGoogle Scholar
  97. Thalau, P., Ritz, T., Burda, H., Wegner, R.E., Wiltschko, R., 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R. Soc. Interface 3, 583–587.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Thoss, F., Bartsch, B., 2003. The human visual threshold depends on direction and strength of a weak magnetic field. J. Comp. Physiol. A 189, 777–779.CrossRefGoogle Scholar
  99. Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 1999. Periodic inversion of the vertical component of the Earth’s magnetic field influences fluctuations of visual sensitivity in humans. Bioelectromagnetics 20, 459–461.PubMedCrossRefGoogle Scholar
  100. Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D., Thoss, M., 2000. The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J. Comp. Phys. A 186, 1007–1010.CrossRefGoogle Scholar
  101. Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 2002. The light sensitivity of the human visualsystem depends on the direction of view. J.Comp. Physiol.A188, 235–237.Google Scholar
  102. Vácha, M., Kvicalova, M., Puzova, T., 2010. American cockroaches prefer four cardinal geomagnetic positions at rest. Behaviour 147, 425–440.CrossRefGoogle Scholar
  103. Vargas, J.P., Siegel, J.J., Bingman, V.P., 2006. The effects of a changing ambient magnetic field onsingle-unit activity in the homing pigeon hippocampus. Brain Res. Bull. 70, 158–164.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Walker, M.M., Bitterman, M., 1989. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494.Google Scholar
  105. Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C., Green, C.R., 1997. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376.PubMedCrossRefGoogle Scholar
  106. Wang, Y., Pan, Y., Parsons, S., Walker, M.M., Zhang, S., 2007. Bats respond to polarity of a magnetic field. Proc. Roy. Soc. B 274, 2901–2905.CrossRefGoogle Scholar
  107. Wegner, R.E., Begall, S., Burda, H., 2006. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J. Exp. Biol. 209, 4747–4750.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wehner, R., Labhart, T., 1970. Perceptionofthegeomagneticfieldinthefly Drosophila melanogaster. Cell. Mol. Life Sci. 26, 967–968.CrossRefGoogle Scholar
  109. Westby, G., Partridge, K.J., 1986. Human homing: still no evidence despite geomagnetic controls. J. Exp. Biol. 120, 325.Google Scholar
  110. Wiltschko, R., Ritz, T., Stapput, K., Thalau, P., Wiltschko, W., 2005. Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol. 15, 1518–1523.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wiltschko, R., Stapput, K., Ritz, T., Thalau, P., Wiltschko, W., 2007. Magnetoreception in birds: different physical processes for two types of directional responses. HFSP J. 1, 41–48.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wiltschko, R., Stapput, K., Thalau, P., Wiltschko, W., 2010. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interface 7, 163–177.CrossRefGoogle Scholar
  113. Wiltschko, R., Wiltschko, W., 1995. Magnetic Orientation in Animals. Springer, Berlin, 297 pp.CrossRefGoogle Scholar
  114. Wiltschko, R., Wiltschko, W., 2006. Magnetoreceptio. Bioessays 28, 157–168. Wiltschko, W., Wiltschko, R., 1972. Magnetic compass of European robins. Science 176, 62–64.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2012

Authors and Affiliations

  • Sabine Begall
    • 1
    Email author
  • E. Pascal Malkemper
    • 1
  • Jaroslav Červený
    • 2
  • Pavel Němec
    • 3
  • Hynek Burda
    • 1
    • 2
  1. 1.Department of General Zoology, Faculty of BiologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood SciencesCzech University of Life SciencesPraha 6Czech Republic
  3. 3.Department of Zoology, Faculty of ScienceCharles University in PraguePraha 2Czech Republic

Personalised recommendations