Advertisement

Mammalian Biology

, Volume 77, Issue 4, pp 244–248 | Cite as

Sarcoptes mange (Sarcoptes scabiei) increases diurnal activity of bare-nosed wombats (Vombatus ursinus) in an agricultural riparian environment

  • Philip BorchardEmail author
  • David J. Eldridge
  • Ian A. Wright
Original Investigation

Abstract

Sarcoptes mange is an important disease that affects the health, mobility and longevity of bare-nosed wombats (Vombatus ursinus) in Australia. We measured the activity patterns of wombats infected with varying levels of mange in an agricultural riparian environment using motion-sensing cameras. Over a 10 month period we observed a greater increase in nocturnal activity of mange-free wombats than those with mange on six or more body sections. The percentage of mange-infected wombats was greater during the day, but in the 6h after midnight, wombats were detected with fewer mange-infected segments. Air temperature at the time of wombat detections was generally higher for individuals with mange than those without mange. Our results show that diurnal activity of wombats is likely to increase with higher levels of infection by sarcoptes mange. Increased diurnal activity is likely to present serious problems for the persistence of sustainable populations of wild wombats.

Keywords

Sarcoptes scabiei Mange Wombat Parasites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A., 1996. An Introduction to Categorical Data Analysis. John Wiley & Sons, Inc, New York.Google Scholar
  2. Alados, C.L., Escos, J.M., Emlen, J.M., 1996. Fractal structure of sequential behaviour patterns: an indicator of stress. Anim. Behav. 51, 437–443.CrossRefGoogle Scholar
  3. Arlian, L.R., Runyan, R.A., Achar, S., 1984. Survival and infectivity of Sarcopt. scabiei var. canis and var. hominis. 1. J. Am. Acad. Dermatol. 11, 210–215.CrossRefGoogle Scholar
  4. Arlian, L.R., 1989. Biology, host relations, and epidemiology of Sarcoptes scabiei. Annu. Rev. Entomol. 34, 139–161.CrossRefGoogle Scholar
  5. Barber, I., Dingemanse, N.J., 2010. Parasitism and the evolutionary ecology of animal personality. Philos. T. R. Soc. 365, 4077–4088.CrossRefGoogle Scholar
  6. Berdoy, M., Webster, J.P., MacDonald, D.W., 1995. The manipulation of rat behaviour by Toxoplasma gondii. Mammalia 59, 605–613.CrossRefGoogle Scholar
  7. Borchard, P., McIlroy, J.C., McArthur, C., 2008. Links between riparian characteristics and the abundance of common wombat (Vombatus ursinus) burrows in an agricultural landscape. Wildlife Res. 35, 760–767.CrossRefGoogle Scholar
  8. Borchard, P., Wright, I.A., 2010a. Using camera – trap data to model habitat use by bare- nosed wombats (Vombatus ursinus) and cattle (Bos taurus) in a southeastern Australian agricultural riparian ecosystem. Aust. Mammal. 32, 16–22.CrossRefGoogle Scholar
  9. Borchard, P., Wright, I.A., 2010b. Bulldozers and blueberries: managing fence damage by bare- nosed wombats (Vombatus ursinus) at the agricultural–riparian interface. Human Wildlife Interactions 4, 33–42.Google Scholar
  10. Bowkett, A.E., Rovero, F., Marshall, A.R., 2007. The use of camera-trap data to model habitat use by antelope species in the Udzungwa Mountain forests, Tanzania. Afr. J. Ecol. 46, 1–9.Google Scholar
  11. Bureau of Meteorology, 2011. NSW Climate Averages. Australian Government, Canberra, Available at: https://doi.org/www.bom.gov.au (verified 10.11.11).
  12. Burgess, I., 1994. Sarcoptes scabiei and scabies. Adv. Parasitol. 33, 235–292.CrossRefGoogle Scholar
  13. Evans, M.C., 2008. Home range, burrow-use and activity patterns in common wombats (Vombatus ursinus). Wildlife Res. 35, 455–462.CrossRefGoogle Scholar
  14. Fain, A., 1978. Epidemiological problems of scabes. Int. J. Dermatol., 20–31.CrossRefGoogle Scholar
  15. Hart, B.L., 1990. Behavioural adaptations to pathogens and parasites: five strategies. Neuro. Sci. Biobehav. R. 14, 273–294.CrossRefGoogle Scholar
  16. Hart, B.L., 1992. Behavioural adaptations to parasites: an ethological approach. J. Parasitol. 78, 256–265.CrossRefGoogle Scholar
  17. Hartley, M., English, A., 2005. Sarcoptes scabiei var. wombati infection in the common wombat (Vombatus ursinus). Eur. J. Wildlife Res. 51, 117–121.CrossRefGoogle Scholar
  18. Ibrahim, K.E.E., Abu-Samra, M.T., 1987. Experimental transmission of a goat strain of Sarcoptes scabei to desert sheep and its treatment with ivemectin. Vet. Parasitol. 26, 157–164.CrossRefGoogle Scholar
  19. Jones, M.E., Cockburn, A., Hamede, R., Hawkins, C., Hesterman, H., Lachish, S., Mann, D., McCallum, H., Pemberton, D., 2008. Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl. Acad. Sci. U.S.A. 105, 10023–10027.CrossRefGoogle Scholar
  20. Keith, D.A., 2004. Ocean Shores to Desert Dunes: The Native Vegetation of New South Wales and the ACT. Department of Environment and Conservation, NSW, Australia.Google Scholar
  21. Marks, C.A., 1998. Field assessment of electric fencing to reduce fence damage by the common wombat Vombatus ursinus. In: Wells, R.T., Pridmore, P.A. (Eds.), Wombats–Proceedings of the First National Conference on Wombats. Surrey Beatty and Sons, Chipping Norton, Australia, pp. 298–304.Google Scholar
  22. Marks, C.A., Carolan, J., Leighty, R., 1989. The Pest Behaviour and Management of the Common Wombat Vombatus ursinus in North Eastern Victoria. Graduate School of Environmental Science, Monash University, Clayton, Australia.Google Scholar
  23. Martin, R.W., Handasyde, K.A., Skerratt, L.F., 1998. Current distribution of sarcoptes mange in wombats. Aust. Vet. J. 76, 411–414.CrossRefGoogle Scholar
  24. Otani, T., 2002. Seed dispersal by Japanese marten Martes melampus in the subalpine shrubland of northern Japan. Ecol. Res. 17, 29–38.CrossRefGoogle Scholar
  25. Overskaug, K., 1994. Behavioural changes due to sarcoptic mange. Acta Vet. Scand. 35, 457–459.PubMedGoogle Scholar
  26. Pence, D.B., Ueckermann, E., 2002. Sarcoptic mange in wildlife. Rev. Sci. Tech. Off. Int. Epiz. 21, 385–398.CrossRefGoogle Scholar
  27. Perez, J.M., Ruiz-Martinez, I., Granados, J.E., Soriguer, R.C., Fandos, P., 1997. The dynamics of sacoptes mange in the ibex population of Sierra Nevada in Spain: influence of climatic factors. J. Wildlife Res. 1, 86–89.Google Scholar
  28. Poulin, R., 1995. Adaptive changes in the behaviour of parasitized animals: a critical review. Int. J. Parasitol. 25, 1371–1383.CrossRefGoogle Scholar
  29. Quinn, S.C., Brooks, R.J., Cawthorn, R.J., 1987. Effects of the protozoan parasite Sarcocystis rauschorum on open-field behaviour of its immediate vertebrate host, Dicrostonyx richardsoni. J. Parasitol. 73, 265–271.CrossRefGoogle Scholar
  30. Rau, M.E., Caron, F.R., 1979. Parasite-induced susceptibility of moose to hunting. Can. J. Zool. 57, 2466–2468.CrossRefGoogle Scholar
  31. Skerratt, L.F., Middleton, D., Beveridge, I., 1999. Distribution of life cycle stages of Sarcoptes scabiei var Wombati and effects of severe mange on common wombats in Victoria. J. Wildlife Dis. 35, 633–646.CrossRefGoogle Scholar
  32. Skerratt, L.F., Skerratt, J.H.L., Banks, S., Martin, R., Handasyde, K., 2004a. Aspects of the ecology of common wombats (Vombatus ursinus) athigh density on pastoral land in Victoria. Aust. J. Zool. 52, 303–330.CrossRefGoogle Scholar
  33. Skerratt, L.F., Skerratt, J.H.L., Martin, R., Handasyde, K., 2004b. The effects of sarcoptic mange on the behaviour of wild common wombats (Vombatus ursinus). Aust. J. Zool. 52, 331–339.CrossRefGoogle Scholar
  34. SPSS, 1999. SPSS Base 10.0 User’s Guide. SPSS Inc., Chicago.Google Scholar
  35. Tobler, M.W., Carrillo-Percastegui, S.E., Leite Pitman, R., Mares, R., Powell, G., 2008. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest animals. Anim. Conserv. 11, 169–178.CrossRefGoogle Scholar
  36. Triggs, B., 2009. Wombats, second edn. CSIRO, Victoria, Australia.Google Scholar
  37. Woolnough, A.P., Johnson, C.N., 2000. Assessment of the potential for competition between two sympatric herbivores – the northern hairy-nosed wombat, Lasiorhinus krefftii, and the eastern grey kangaroo, Macropus giganteus. Wildlife Res. 27, 201–308.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2012

Authors and Affiliations

  • Philip Borchard
    • 1
    Email author
  • David J. Eldridge
    • 2
  • Ian A. Wright
    • 3
  1. 1.Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental Sciences, University of NSWSydneyAustralia
  2. 2.Office of Environment and Heritage, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of NSWSydneyAustralia
  3. 3.School of Natural SciencesUniversity of Western SydneyPenrith South DCAustralia

Personalised recommendations