Mammalian Biology

, Volume 77, Issue 4, pp 249–257 | Cite as

Variation in habitat use of coexisting rodent species in a tropical dry deciduous forest

  • Cassie J. Poindexter
  • Gary D. SchnellEmail author
  • Cornelio Sánchez-Hernández
  • María de Lourdes Romero-Almaraz
  • Michael L. Kennedy
  • Troy L. Best
  • Michael C. Wooten
  • Robert D. Owen
Original Investigation


Use of habitat is a critical component related to structure of small-mammal communities, with partitioning occurring primarily along dimensions of microhabitat, although use of microhabitat often does not explain fully use at a macrohabitat level. Through grid studies of small mammals in coastal Colima, Mexico (during January 2003–2005), we appraised influence of available habitat, species richness, abundance, and cumulative abundance of other small mammals on variation in habitat used by species. We evaluated 14 habitat variables (reflecting ground cover, slope, canopy, and vegetation density on vertical and horizontal axes) and developed a composite variable (principal component 1) reflecting general openness of habitat through which we addressed habitat use. For the four most common mammalian species (Sigmodon mascotensis, Heteromys pictus, Baiomys musculus, and Oryzomys couesi), two measures of variation in habitat used were employed to estimate niche breadth, one of which assessed variation in habitat use relative to variation present on a grid. Sigmodon mascotensis and B. musculus preferred areas that were more open, and H. pictus and O. couesi occupied less-open areas; breadth of habitat use did not differ interspecifically. Habitat use was more variable on grids with more variability in habitat, although not greater than chance expectations. Findings do not lend support to the resource-breadth hypothesis as an explanation for population densities of species at a local level or the habitat-heterogeneity hypothesis as a predictor of species richness. Variation in habitat used by S. mascotensis did not proportionally increase when diverse habitat was available but was greater when the species was more abundant. For H. pictus, when cumulative abundance of other small mammals was greater, breadth of habitat used was greater. Intraspecific density-dependent habitat selection may result in S. mascotensis selecting a greater variety of habitats, while greater interspecific abundance is related to a greater range in use of habitats by H. pictus. Baiomys musculus used a higher proportion of habitat relative to that available when more species were present on a grid. Variation in habitat used by O. couesi was unrelated to any factor examined. Overall, the four species responded in notably different ways with respect to availability of habitat, abundance, and presence of other species.


Sigmodon mascotensis Heteromys pictus Baiomys musculus Oryzomys couesi Species richness Density-dependent habitat selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramsky, Z., Rosenzweig, M.L., Pinshow, B., Brown, J.S., Kotler, B., Mitchell, W.A., 1990. Habitat selection: an experimental field test with two gerbil species. Ecology 71, 2358–2369.CrossRefGoogle Scholar
  2. August, P.V., 1983. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507.CrossRefGoogle Scholar
  3. Benson, D.L., Gehlbach, F.R., 1979. Ecological and taxonomic notes on the rice rat (Oryzomys couesi) in Texas. J. Mammal. 60, 225–228.CrossRefGoogle Scholar
  4. Bradley, R.A., Bradley, D.W., 1985.Donon-random patterns of species in niche space imply competition? Oikos 45, 443–446.CrossRefGoogle Scholar
  5. Brown, J.H., 1984. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279.CrossRefGoogle Scholar
  6. Brown, J.S., 1989. Desert rodent community structure: a test of four mechanisms of coexistence. Ecol. Monogr. 59, 1–20.CrossRefGoogle Scholar
  7. Castro-Arellano, I., 2005. Ecological patterns of the small mammal communities at El Cielo Biosphere Reserve, Tamaulipas, Mexico. Ph.D. Dissertation. Texas A&M University, College Station, TX.Google Scholar
  8. Engstrom, M.D., Schmidt, C.A., Morales, J.C., Dowler, R.C., 1989. Records of mammals from Isla Cozumel, Quintana Roo, Mexico. Southwest. Nat. 34, 413–415.CrossRefGoogle Scholar
  9. Feinsinger, P., Spears, E.E., Poole, R.W., 1981. A simple measure of niche breadth. Ecology 62, 27–32.CrossRefGoogle Scholar
  10. Fretwell, S.D., Lucas Jr., H.L., 1970. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor. 19, 16–36.CrossRefGoogle Scholar
  11. García-Estrada, C., Romero-Almaraz, M.L., Sánchez-Hernández, C., 2002. Comparison of rodent communities in sites with different degrees of disturbance in deciduous forest of southeastern Morelos, Mexico. Acta Zool. Mex. (n.s.) 85, 153–168.Google Scholar
  12. Genoways, H.H., Timm, R.M., 2005. Mammals of the Cosigüina Peninsula of Nicaragua. Mastozool. Neotrop. 12, 153–179.Google Scholar
  13. Golden Software Inc., 2002. Surfer User’s Guide. Golden Software Inc., Golden, CO.Google Scholar
  14. Grant, P.R., 1972. Interspecific competition among rodents. Annu. Rev. Ecol. Syst. 3, 79–106.CrossRefGoogle Scholar
  15. Grant, P.R., 1975. Population performance of Microtus pennsylvanicus confined to woodland habitat, and a model of habitat occupancy. Can. J. Zool. 53, 1447–1465.CrossRefGoogle Scholar
  16. Grant, P.R., 1978. Competition between species of small mammals. In: Snyder, D.P. (Ed.), Populations of Small Mammals under Natural Conditions. Pymatuning Laboratory of Ecology, Spec. Publ. Ser. 5. University of Pittsburg, Pittsburgh, PA, pp. 38–51.Google Scholar
  17. Gregory, R.D., Gaston, K.J., 2000. Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos 88, 515–526.CrossRefGoogle Scholar
  18. Hafner, J.C., Light, J.E., Hafner, D.J., Hafner, M.S., Reddington, E., Rogers, D.S., Riddle, B.R., 2007. Basal clades and molecular systematics of heteromyid rodents. J. Mammal. 88, 1129–1145.CrossRefGoogle Scholar
  19. Holbrook, S.J., 1979. Habitat utilization, competitive interactions, and coexistence of three species of cricetine rodents in east-central Arizona. Ecology 60, 758–769.CrossRefGoogle Scholar
  20. Instituto Nacional de Estadística, Geografía e Informática, 2006. Anuario estadístico del estado de Colima, 2006 edición. Instituto Nacional de Estadística, Geografía e Informática, Aguascalientes, Aguascalientes, México.Google Scholar
  21. Jorgensen, E.E., 2004. Small mammal use of microhabitat reviewed. J. Mammal. 85, 531–539.CrossRefGoogle Scholar
  22. Kryštufek, B., Haberl, W., Baxter, R.M., 2007. Rodent assemblage in a habitat mosaic within the Valley Thicket vegetation of the Eastern Cape Province, South Africa. Afr. J. Ecol. 46, 80–87.CrossRefGoogle Scholar
  23. Lacher Jr., T.E., Mares, M.A., 1986. The structure of Neotropical mammal communities: an appraisal of current knowledge. Rev. Chil. Hist. Nat. 59, 121–134.Google Scholar
  24. Lambert, T.D., Malcolm, J.R., Zimmerman, B.L., 2006. Amazonian small mammal abundances in relation to habitat structure and resource abundance. J. Mammal. 87, 766–776.CrossRefGoogle Scholar
  25. Lindberg, W.J., Frazer, T.K., Portier, K.M., Vose, F., Loftin, J., Murie, J.J., Mason, D.M., Nagy, B., Hart, M.K., 2006. Density-dependent habitat selection and performance by a large mobile reef fish. Ecol. Appl. 16, 731–746.PubMedCrossRefGoogle Scholar
  26. MacArthur, R.H., MacArthur, J.W., 1961. On bird species diversity. Ecology 42, 594–598.CrossRefGoogle Scholar
  27. MacArthur, R.H., Wilson, E.O., 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
  28. Matson, J.O., Baker, R.H., 1986. Mammals of Zacatecas. Spec. Publ. Mus., Texas Tech Univ. 24, pp. 1–88.Google Scholar
  29. Mayor, S.J., Schneider, D.C., Schaefer, J.A., Mahoney, S.P., 2009. Habitat selection at multiple scales. Ecoscience 16, 238–247.CrossRefGoogle Scholar
  30. McGhee, M.E., Genoways, H.H., 1978. Liomys pictus. Mamm. Species 83, 1–5.CrossRefGoogle Scholar
  31. McLoughlin, P.D., Morris, D.W., Fortin, D., Vander Wal, E., Contasti, A.L., 2010. Considering ecological dynamics in resource selection functions. J. Anim. Ecol. 79, 4–12.PubMedCrossRefGoogle Scholar
  32. Medellín, X.L., Medellín, R.A., 2005. Oryzomys couesi (Alston, 1877). In: Ceballos, G., Oliva,G.(Eds.),Los Mamíferos Silvestres de México. Fondode Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, D.F., pp. 709–710.Google Scholar
  33. Morris, D.W., 1987. Ecological scale and habitat use. Ecology 68, 362–369.CrossRefGoogle Scholar
  34. Morris, D.W., 1989. The effect of spatial scale on patterns of habitat use: red-backed volesas an empirical model of local abundance for northern mammals. In: Morris, D.W., Abramsky, Z., Fox, B.J., Willig, M.R. (Eds.), Patterns in the Structure of Mammalian Communities, Spec. Publ. Mus., Texas Tech Univ. 28. , pp. 23–32.Google Scholar
  35. Morris, D.W., 2003. Toward an ecological synthesis: a case for habitat selection. Oecologia 136, 1–13.PubMedCrossRefGoogle Scholar
  36. Packard, R.L., Montgomery Jr., J.B., 1978. Baiomys musculus. Mamm. Species 102, 1–3.CrossRefGoogle Scholar
  37. Paine, T.D., Birch, M.C., Švihra, P., 1981. Niche breadth and resource partitioning by four sympatric species of bark beetles (Coleoptera: Scolytidae). Oecologia (Berl) 48, 1–6.CrossRefGoogle Scholar
  38. Pandit, S.N., Kolasa, J., Cottenie, K., 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262.PubMedCrossRefGoogle Scholar
  39. Poindexter, C.J., Schnell, G.D., Sánchez-Hernández, C., Romero-Almaraz, M.L., Kennedy, M.L., Best, T.L., Wooten, M.C., Owen, R.D., 2012. Co-occurrence of small mammals in a tropical dry deciduous forest: comparisons of communities and individual species in Colima, Mexico. J. Trop. Ecol. 28, 65–72.CrossRefGoogle Scholar
  40. Ravigné, V., Dieckmann, U., Olivieri, I., 2009. Live where you thrive: joint evolution of habitat choice and local adaptations facilitates specialization and promotes diversity. Am. Nat. 174, E141–E169.PubMedCrossRefGoogle Scholar
  41. Rohlf, F.J., 2009. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System, Version 2.2. Exeter Software, Setauket, NY.Google Scholar
  42. Rosenzweig, M.L., 1979. Optimal habitat selection in two-species competitive systems. Fortschr. Zool. 25, 283–293.Google Scholar
  43. Rosenzweig, M.L., 1991. Habitat selection and population interactions: the search for mechanism. Am. Nat. 137, S5–S28.CrossRefGoogle Scholar
  44. Rosenzweig, M.L., Abramsky, Z., 1985. Detecting density-dependent habitat selection. Am. Nat. 126, 405–417.CrossRefGoogle Scholar
  45. Rosenzweig, M.L., Smigel, B., Kraft, A., 1975. Patterns of food, space and diversity. In: Prakash, I., Ghosh, P.K. (Eds.), Rodents in Desert Environments, Monographiae Biologicae 28. Dr. W. Junk, The Hague, The Netherlands, pp. 241–268.CrossRefGoogle Scholar
  46. Roughgarden, J., 1974. Niche width: biogeographic patterns among Anolis lizard populations. Am. Nat. 108, 429–442.CrossRefGoogle Scholar
  47. Schnell, G.D., Kennedy, M.L., Sánchez-Hernández, C., Romero-Almaraz, M.L., Estevez, B.D.N., Guerrero, J.A., Best, T.L., Wooten, M.C., Owen, R.D., 2008a. Habitat preference of the endemic tawny deermouse (Peromyscus perfulvus), a species of conservation concern. Southwest. Nat. 53, 9–20.CrossRefGoogle Scholar
  48. Schnell, G.D., Poindexter, C.J., Sánchez-Hernández, C., Romero-Almaraz, M.L., Kennedy, M.L., Best, T.L., Wooten, M.C., Pérez Jiménez, A., 2008b. Demographic features and habitat preferences of southern pygmy mice (Baiomys musculus) in Colima, Mexico. Can. J. Zool. 86, 507–524.CrossRefGoogle Scholar
  49. Schnell, G.D., Romero-Almaraz, M.L., Martínez-Chapital, S.T., Sánchez-Hernández, C., Kennedy, M.L., Best, T.L., Wooten, M.C., Owen, R.D., 2010. Habitat use and demographic characteristics of the west Mexican cotton rat (Sigmodon mascotensis). Mammalia 74, 379–393.CrossRefGoogle Scholar
  50. Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27–39.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Scott, D.E., Dueser, R.D., 1992. Habitat use by insular populations of Mus and Peromyscus: what is the role of competition? J. Anim. Ecol. 61, 329–338.CrossRefGoogle Scholar
  52. Seagle, S.W., 1985. Competition and coexistence of small mammals in an East Tennessee pine plantation. Am. Midl. Nat. 114, 272–282.CrossRefGoogle Scholar
  53., LLC, 2009. Resampling Stats Add-in for Excel., LLC, Arlington, VA.Google Scholar
  54. Stevens, R.D., Tello, J.S., 2011. Diversity begets diversity: relative roles of structural and resource heterogeneity in determining rodent community structure. J. Mammal. 92, 387–395.CrossRefGoogle Scholar
  55. Swihart, R.K., Lusk, J.J., Duchamp, J.E., Rizkalla, C.E., Moore, J.E., 2006. The roles of landscape context, niche breadth, and range boundaries in predicting species responses to habitat alteration. Divers. Distrib. 12, 277–287.CrossRefGoogle Scholar
  56. Systat Software Inc., 2008. SigmaPlot 11.0 User’s Guide. Systat Software Inc., San Jose, CA.Google Scholar
  57. Systat Software Inc., 2009. Systat 13: Statistics I. Systat Software Inc., Chicago, IL.Google Scholar
  58. Wilson, D.E., Reeder, D.M. (Eds.), 2005. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Johns Hopkins University Press, Baltimore, MD.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2012

Authors and Affiliations

  • Cassie J. Poindexter
    • 1
  • Gary D. Schnell
    • 1
    Email author
  • Cornelio Sánchez-Hernández
    • 2
  • María de Lourdes Romero-Almaraz
    • 3
  • Michael L. Kennedy
    • 4
  • Troy L. Best
    • 5
  • Michael C. Wooten
    • 5
  • Robert D. Owen
    • 6
    • 7
  1. 1.Sam Noble Oklahoma Museum of Natural History and Department of ZoologyUniversity of OklahomaNormanUSA
  2. 2.Departamento de ZoologíaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCoyoacán, México, D.F.Mexico
  3. 3.Escuinapa No. 92 bis. Col. Pedregal de Santo DomingoMéxico, D.F.Mexico
  4. 4.Ecological Research Center, Department of Biological SciencesUniversity of MemphisMemphisUSA
  5. 5.Department of Biological SciencesAuburn UniversityUSA
  6. 6.Department of Biological SciencesTexas Tech UniversityLubbockUSA
  7. 7.Martín Barrios 2230 c/Pizarro, Barrio RepublicanoAsunciónParaguay

Personalised recommendations