Advertisement

Mammalian Biology

, Volume 77, Issue 2, pp 108–112 | Cite as

Plateau zokors on the Qinghai-Tibetan Plateau follow Bergmann’s rule latitudinally, but not altitudinally

  • Tongzuo Zhang
  • Eviatar Nevo
  • Lizhou Tang
  • Jianping Su
  • Gonghua LinEmail author
Original Investigation

Abstract

Since the first description of the Bergmann’s rule, body size clines along environmental gradients have been examined in a wide variety of taxa. Broad support for Bergmann’s rule has been found for endotherms and even ectotherms; many species, however, do not follow Bergmann’s rule or the converse to Bergmann’s rule. We tested the relationship between body size (body weight (BW), body length (BL), and 12 skull size measurements) of a typical subterranean rodent plateau zokor (Eospalax baileyi) collected from different geographic localities and two geographic variables (latitude and altitude) as well as some environmental factors that usually change with geographical gradients on the Qinghai-Tibetan Plateau. A total of 523 (212 males and 311 females) adult individuals from 21 sampling sites were analyzed. The results indicated that body size of both males and females was positively correlated with latitude, annual temperature (AT), and annual net primary production (ANPP) and negatively correlated with altitude and annual precipitation (AP). These results indicated that the plateau zokor latitudinally followed Bergmann’s rule but altitudinally followed the converse to Bergmann’s rule. The environmental factors which may influence the zokors’ water balance and food availability were the major driving forces latitudinally and altitudinally shaping the body size of this species, respectively.

Keywords

Eospalax baileyi Subterranean rodent Body size Water balance Food availability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashton, K.G., Tracy, M.C., deQueiroz, A., 2000. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415.CrossRefGoogle Scholar
  2. Bergmann, C., 1847. Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Gottinger Studien, Gottingen.Google Scholar
  3. Han, C.X., Yang, X.J., Wang,M.C., 2003. TheIntegrate ManagementofForest-Rodents. Northwest Sci-Tech Universityof Agriculture and Forestry Press, Xian, China, pp. 118–120.Google Scholar
  4. Hoppeler, H., Weibel, E.R., 2005. Scaling functions to body size: theories and facts. J. Exp. Biol. 208, 1573–1574.CrossRefGoogle Scholar
  5. Jin, Y.T., Liu, N.F., Li, J.L., 2007. Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) Plateau. Belg. J. Zool. 137, 197–202.Google Scholar
  6. Lacey, E.A., Patton, J., Cameron, G., 2000. Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago.Google Scholar
  7. Liao, J.C., Zhang, Z.B., Llu, N.F., 2006. Altitudinal variation of skull size in Daurian pika (Ochotona daurica Pallas, 1868). Acta Zool. Acad. Sci. Hung. 52, 319–329.Google Scholar
  8. Lin, G., Ci, H., Zhang, T., Su, J., 2008. Conformity to Bergmann’s Rule in Plateau Pika (Ochotona curzoniae Hodgson, 1857)on Qinghai-Tibetan Plateau. Acta Zool. Acad. Sci. Hung. 54, 411–418.Google Scholar
  9. Mayr, E., 1956. Geographical character gradients and climatic adaptation. Evolution 10, 105–108.CrossRefGoogle Scholar
  10. Medina, A.I., Marti, D.A., Bidau, C.J., 2007. Subterranean rodents of the genus Cteno-mys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule. J. Biogeogr. 34, 1439–1454.CrossRefGoogle Scholar
  11. Meiri, S., 2011. Bergmann’s Rule—what’s in a name? Global Ecol. Biogeogr. 20, 203–207.CrossRefGoogle Scholar
  12. Meiri, S., Dayan, T., 2003. On the validityof Bergmann’s rule. J.Biogeogr. 30, 331–351.CrossRefGoogle Scholar
  13. Meiri, S., Dayan, T., Simberloff, D., 2004. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588.CrossRefGoogle Scholar
  14. Nevo, E., 1999. Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence. Oxford University Press, Oxford.Google Scholar
  15. Nevo, E., Beiles, A., Heth, G., Simson, S., 1986. Adaptive differentiation of body size in speciating mole rats. Oecologia 69, 327–333.CrossRefGoogle Scholar
  16. Ochocinska, D., Taylor, J.R.E., 2003. Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biol. J. Linn. Soc. 78, 365–381.CrossRefGoogle Scholar
  17. Peacock, A.J., 1998. ABC of oxygen: oxygen at high altitude. BMJ 317, 1063–1066.CrossRefGoogle Scholar
  18. Tang, L., Wang, L., Cai, Z., Zhang, T., Ci, H., Lin, G., Su, J., Liu, J., 2010. Allopatric divergence and phylogeographic structure of the plateau zokor (Eospalax bai-leyi), a fossorial rodent endemic to the Qinghai-Tibetan Plateau. J. Biogeogr. 37, 657–668.CrossRefGoogle Scholar
  19. Vleck, D., 1979. Theenergy cost of burrowing by the pocket gopher Thomomys bottae. Physiol. Zool. 52, 122–135.CrossRefGoogle Scholar
  20. Watt, C., Mitchell, S., Salewski, V., 2010. Bergmann’s rule: a concept cluster? Oikos 119, 89–100.Google Scholar
  21. West, G.B., Brown, J.H., Enquist, B.J., 1997. Ageneral model for the origin of allometric scaling laws in biology. Science 276, 122–126.CrossRefGoogle Scholar
  22. Zheng, S.W., Zhou, L., 1984. Age investigation of mole rat populations. I: on principal components analysis method of the population age determination of mole rat. Acta Theri. Sin. 4 (4), 311–318.Google Scholar
  23. Zhou, W.Y., Dou, F.M., 1990. Studies on activity and home range of plateau zokor. Acta Theri. Sin. 10 (1), 31–39.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2011

Authors and Affiliations

  • Tongzuo Zhang
    • 1
  • Eviatar Nevo
    • 2
  • Lizhou Tang
    • 1
    • 3
  • Jianping Su
    • 1
  • Gonghua Lin
    • 1
    Email author
  1. 1.Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
  2. 2.Institute of EvolutionUniversity of Haifa, Mount CarmelHaifaIsrael
  3. 3.Yunnan-Guizhou Plateau Institute of BiodiversityQujing Normal UniversityQujingChina

Personalised recommendations