Mammalian Biology

, Volume 76, Issue 2, pp 109–114 | Cite as

Interatheriidae (Typotheria; Notoungulata), body size and paleoecology characterization

  • Alejo C. ScaranoEmail author
  • Alfredo A. Carlini
  • Andrew W. Illius
Original Investigation


Size has a major influence on animal’s adaptation to its environment and is central to paleobiological characterization of fossil mammals. We present new models of body mass estimation for the Interatheriidae (Notoungulata, Typotheria). This small herbivorous mammals extends from the late Paleocene to the late Miocene and they are very well represented in the paleontological record of southern South America during a geological time lapse that witnessed extremely important events, at both climatic and biotic levels. The importance of the group as paleoecological indicators for a great part of the Cenozoic is emphasized by their long biochron and abundance in the fossil record. In this context, estimation of the body mass becomes crucial to reconstruct and infer ecologicalenvironmental structure for a given time period. The results of the calculation of body masses from these new equations shows overall narrower range, smaller deviations, lower de-transformation correction and lower prediction error than previous equations used for body mass estimation in herbivores ungulates, establishing the maximum body mass for the Interatheriidae in 8.3 kg. These new body masses were utilized for characterization of the nutritional ecology of Protypotherium australe (early Miocene), suggesting browser habits but it does not exclude grass from been part of the diet.


Body mass estimation Reference group Herbivores Interatheriidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Álvarez-Romero, J., Medellín, R.A., 2005. Oryctolagus cuniculus. Vertebrados superiores exóticos en México: diversidad, distribución y efectos potenciales. Instituto de Ecología, Universidad Nacional Autónoma de México. Bases de datos SNIBCONABIO. Proyecto U020. México, D.F.Google Scholar
  2. Bond, M., Carlini, A.A., Goin, F.J., Legarreta, l., Ortiz-Jaureguizar, E., Pascual, R., Uliana, M.A., 1995. Episodes in South American land mammal evolution and sedimentation: testing their apparent concurrence in a Paleocene succession from Central Patagonia. In: VI Congreso Argentino de Paleontologia y Bioestratigrafia, Actas, pp. 47–58.Google Scholar
  3. Croft, D.A. 2000. Archaeohyracidae (Mammalia: Notoungulata) from the Tinguiririca fauna, central Chile, and the evolution and paleoecology of South American mammalian herbivores. Ph.D. Thesis.Google Scholar
  4. Croft, D.A., 2001. Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions 7, 271–287.CrossRefGoogle Scholar
  5. Croft, D.A., Anderson, L.C., 2008. Locomotion in the extint Notoungulate Protypotherium. Palaeontologia Electronica 11, 1–20.Google Scholar
  6. Cumming, D.H.M., Cumming, G.S., 2003. Ungulate community structure and ecological processes: body size, hoof area and trampling in African savannas. Oecologia 134 (4), 560–568.CrossRefGoogle Scholar
  7. Damuth, J., 1990. Problems in estimating body masses of archaic ungulates using dental measurements. In: Damuth, J., MacFadden, B.J. (Eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, pp. 229–253.Google Scholar
  8. Damuth, J., MacFadden, B.J., 1990. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press.Google Scholar
  9. Duan, N., 1983. Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association 78 (383), 605–610.CrossRefGoogle Scholar
  10. Elissamburu, A., 2004. Análisis morfométrico y morfofuncional del esqueleto apendicular de Paedotherium (Mammalia, Notoungulata). Ameghiniana 41 (3), 363–380.Google Scholar
  11. Fortelius, M., 1990. Problems with using fossil teeth to estimate body sizes of extinct mammals. In: Damuth, J., MacFadden, B.J. (Eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, pp. 207–228.Google Scholar
  12. Helsel, D.R., 1990. Less than obvious. Statistical treatment of data below the detection limit. Environ. Sci. Technol. 24, 1766–1774.CrossRefGoogle Scholar
  13. Hjeljord, O., Histøl, T., 1999. Range-body mass interactions of a northern ungulate—a test of hypothesis. Oecologia 119, 326–339.CrossRefGoogle Scholar
  14. Illius, A.W., 1997. Physiological adaptation in savanna ungulates. Proceedings of the Nutrition Society 56, 1041–1048.CrossRefGoogle Scholar
  15. Illius, A.W., Gordon, I.J., 1992. Modelling the nutritional ecology of ungulate herbivores: evolution of body size and competitive interactions. Oecologia 89, 428–434.CrossRefGoogle Scholar
  16. Janis, C.M., 1990. Correlation of cranial and dental variables with body size in ungulates and macropodois. In: Damuth, J., MacFadden, B.J. (Eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, pp. 255–299.Google Scholar
  17. Janis, C.M., Constable, E., 1993. Can ungulate craniodental features determine digestive phisiology. Journal of Vertebrate Paleontology 13, 43A.Google Scholar
  18. Janis, C.M., Gordon, I.J., Illius, A.W., 1994. Modelling equid/ruminant competition in the fossil record. Journal Historical Biology 8, 15–29.CrossRefGoogle Scholar
  19. Jarman, P.J., 1974. The social organization of antelope in relation to their ecology. Behaviour 48, 215–267.CrossRefGoogle Scholar
  20. Kohavi, R.A., 1995. Study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143.Google Scholar
  21. Manly, B.F.J., 2004. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, London.Google Scholar
  22. McArdle, B.H., 2003. Lines, models, and errors: regression in the field. Limnology and Oceanography 48 (3), 1363–1366.CrossRefGoogle Scholar
  23. Mendoza, M., Janis, C.M., Palmqvist, P., 2002. Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. Journal of Zoology 258, 223–246.CrossRefGoogle Scholar
  24. Pérez-Barbería, F.J., Gordon, I.J., 1999. The relative roles of phylogeny, body size and feeding style on the activity time of temperate ruminants: a reanalysis. Oecologia 120, 193–197.CrossRefGoogle Scholar
  25. Quinn, G.P., Keough, M.J., 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press.Google Scholar
  26. Reguero, M.A., Ubilla, M., Perea, D., 2003. A new species of eopachyrucos (mammalia, notoungulata, interatheriidae) from the late oligocene of Uruguay. Journal of Vertebrate Paleontology 23 (2), 445–457.CrossRefGoogle Scholar
  27. Reguero, M.A., Candela, A.M., Cassini, G.H., 2010. Hypsodonty and Body Size in Rodent-like Notoungulates. The Paleontology of Gran Barranca Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press.Google Scholar
  28. Riska, B., 1991. Regression models in evolutionary allometry. The American Naturalist 138 (2), 283–299.CrossRefGoogle Scholar
  29. Scarano, A.C., 2009. El proceso de desarrollo de la hipsodoncia durante la transición Eoceno-Oligoceno: El caso de los Ungulados autóctonos del Orden Notoungulata (Mammalia). Ph.D. Thesis. UNLP.Google Scholar
  30. Scarano, A.C., Carlini, A.A., 2007. Morfología Premaxilar e interpretación dietaria en Interatheriidae (Mammalia, Notoungulata, Typotheria), una hipótesis alternativa. Reunión Anual de Comunicaciones, Asociación Paleontológica Argentina. Corrientes.Google Scholar
  31. Scarano, A.C., Carlini, A.A., Castro, L., 2009. Predicción de hábitos dietarios en ungulados fósiles sudamericanos (Mammalia, Notoungulata) y su contraste con el desarrollo de hipsodoncia. Reunión Anual de Comunicaciones de la Asociación Paleontológica Argentina, MACN, Argentina.Google Scholar
  32. Silva, M., Downing, J.A., 1995. The allometric scaling of density and body mass: a nonlinear relationship for terrestrial mammals. The American Naturalist 145 (5), 704–727.CrossRefGoogle Scholar
  33. Smith, R.J., 1980. Rethinking allometry. Journal of Theoretical Biology 87 (1), 97–111.CrossRefGoogle Scholar
  34. Smith, R.J., 1984. Determination of relative size: the “criterion of subtraction” problem in allometry. Journal of Theoretical Biology 108, 131–142.CrossRefGoogle Scholar
  35. Smith, R.J., 1993. Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90, 215–228.CrossRefGoogle Scholar
  36. Smith, R.J., 1994. Regression models for prediction equations. Journal of Human Evolution 26, 239–244.CrossRefGoogle Scholar
  37. Smith, R.J., 1996. Biology and body size in human evolution: statistical inference misapplied. Current Anthropology 37 (3), 451–481.CrossRefGoogle Scholar
  38. Smith, R.J., 2002. Estimation of body mass in paleontology. Journal of Human Evolution 43 (2), 271–287.CrossRefGoogle Scholar
  39. Snowdon, P., 1991. A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research 21 (5), 720–724.CrossRefGoogle Scholar
  40. Townsend, K.E.B., Croft, D.A., 2008. Diets of notoungulates from the Santa Cruz formation, Argentina: new evidence from enamel microwear. Journal of Vertebrate Paleontology 28, 217–230.CrossRefGoogle Scholar
  41. Van Valkenburgh, B, 1990. Skeletal and dental predictors of body mass in carnivores. In: Damuth, J., MacFadden, B.J. (Eds.), Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, pp. 181–205.Google Scholar
  42. Warton, D.I., Wright, I.J., Falster, D.S., Westoby, M., 2006. Bivariate line-fitting methods for allometry. Biological Reviews 81, 259–291.CrossRefGoogle Scholar
  43. Zar, J.H., 1996. Biostatistical Analysis. Prentice-Hall.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2010

Authors and Affiliations

  • Alejo C. Scarano
    • 1
    Email author
  • Alfredo A. Carlini
    • 1
    • 2
  • Andrew W. Illius
    • 3
  1. 1.División Paleontología de VertebradosMuseo de La PlataLa PlataArgentina
  2. 2.Paleontologisches Institut und MuseumUniversitât ZürichZürichSwitzerland
  3. 3.Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghScotlandUK

Personalised recommendations