Mammalian Biology

, Volume 76, Issue 1, pp 22–27 | Cite as

Geographical distribution and chromosomal study of the underground vole Microtus thomasi in Albania and Montenegro

  • Michail Th. Rovatsos
  • George P. Mitsainas
  • Gligor Paspali
  • Selfo Oruci
  • Eva B. Giagia-AthanasopoulouEmail author
Original Investigation


In order to better define the geographical distribution of the underground vole Microtus thomasi and the chromosomal variability, within its natural populations, we studied 77 individuals from 14 localities of Albania and Montenegro. Chromosomal preparations were obtained from bone marrow and testicular material, on which a karyological analysis, based on C-banding patterns was performed. The examined individuals belonged to the chromosomal races “thomasi” (2 n = 44, FN = 44), “subalpine” (2 n = 42, FN = 42) and “Rb-subalpine” (2 n = 40, FN = 42), which are also distributed in Greece. However, the C-banding pattern revealed an extensive sex chromosome polymorphism, demonstrated by three different X and three different Y chromosomal variants. Taking under consideration all available chromosomal data for M. thomasi, it seems that the species could possess the highest chromosomal variability, within its genus. It is proposed that due to the limited mobility of the underground vole and the rough, mountainous terrain of the Balkan Peninsula, it is possible that several small populations were isolated, in which inbreeding and random genetic drift led to the fixation of different chromosomal mutations, giving rise to the extensive chromosomal variability, observed today.


Microtus Asynaptic Heterochromatin Sex chromosomes Polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta, M.J., Marchai, J.A., Mitsainas, G.P., Rovatsos, M.T., Fernández-Espartero, C.H., Giagia-Athanasopoulou, E.B., Sánchez, A., 2009. A new pericentromeric repeated DNA sequence in Microtus thomasi. Cytogenet. Gen. Res. 124, 27–36.CrossRefGoogle Scholar
  2. Ashley, T., Jaarola, M., Fredga, K., 1989. Absence of synapsis during pachynema of the normal sized sex chromosomes of Microtus arvalis. Hereditas 111, 295–304.PubMedPubMedCentralGoogle Scholar
  3. Bego, F., Krystufek, B., Paspasli, G., Rogozi, E., 2008. Small terrestrial mammals of Albania: annotated list and distribution. Hystrix 19, 83–101.Google Scholar
  4. Bilton, D.T., Mirol, P.M., Mascheretti, S., Fredga, K., Zima, J., Searle, J.B., 1998. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. R. Soc. B.-Biol. Sci. 265, 1219–1226.CrossRefGoogle Scholar
  5. Borodin, P.M., Sablina, O.V., Rodionova, M.I., 1995. Pattern of X-Y chromosome pairing in microtine rodents. Hereditas 123, 17–23.CrossRefGoogle Scholar
  6. Burgos, M., Jiménez, R., Olmos, D.M., Diaz de la Guardia, R., 1988. Heterogeneous heterochromatin and size variation in the sex chromosomes of Microtus cabrerae. Cytogenet. Cell Genet. 47, 75–79.CrossRefGoogle Scholar
  7. Burgoyne, P.S., 1982. Genetic homology and crossing over in the X and Y chromosomes of mammals. Hum. Genet. 61, 85–90.CrossRefGoogle Scholar
  8. Carnero, A., Jiménez, R., Sánchez, A., Díaz de la Guardia, R., 1991. Achiasmatic sex chromosomes in Pitymys duodecimcostatus: mechanisms of association and segregation. Cytogenet. Cell Genet. 56, 78–81.CrossRefGoogle Scholar
  9. Castiglia, R., Annesi, F., Aloise, G., Amori, G., 2008. Systematics of the Microtus savii complex (Rodentia, Cricetidae) via mitochondrial DNA analyses: paraphyly and pattern of sex chromosome evolution. Mol. Phylogenet. Evol. 46, 1157–1164.CrossRefGoogle Scholar
  10. Chassovnikarova, T.G., Markov, G.G., Atanassov, N.I., Dimitrov, H.A., 2008. Sex chromosome polymorphism in Bulgarian populations of Microtus guentheri (Danford & Alston, 1880). J. Nat. Hist. 42, 261–267.CrossRefGoogle Scholar
  11. Fredga, K., Jaarola, M., Ims, R.A., Steen, H., Yoccoz, N.G., 1990. The ‘common vole’ in Svalbard identified as Microtus epiroticus by chromosome analysis. Polar Res. 8, 283–290.CrossRefGoogle Scholar
  12. Hewitt, G.M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276.CrossRefGoogle Scholar
  13. Galleni, L., 1995. Speciation in the Savi pine vole, Microtus savii (De Sel. L.) (Rodentia, Arvicolidae): a theoretical biology approach. Boll. Zool. 62, 45–51.CrossRefGoogle Scholar
  14. Galleni, L., Tellini, A., Stanyon, R., Cicalo, A., Santini, L., 1994. Taxonomy of Microtus savii (Rodentia, Arvicolidae) in Italy: cytogenetic and hybridization data. J. Mammal. 75, 1040–1044.CrossRefGoogle Scholar
  15. Giagia, E.B., 1985. Karyotypes of ‘44-chromosomes’ Pitymys species (Rodentia, Mammalia) and their distribution in southern Greece. Säugetierk. Mit. 32, 169–173.Google Scholar
  16. Giagia-Athanasopoulou, E.B., Chondropoulos, B.P., Fraguedakis-Tsolis, S.E., 1995. Robertsonian chromosomal variation in the subalpine voles Microtus (Terricola) (Rodentia, Arvicolidae) from Greece. Acta Theriol. 40, 139–143.CrossRefGoogle Scholar
  17. Giagia-Athanasopoulou, E.B., Stamatopoulos, C., 1997. Geographical distribution and interpopulation variation in the karyotypes of Microtus (Terricola) thomasi (Rodentia, Arvicolidae) in Greece. Caryologia 50, 303–315.CrossRefGoogle Scholar
  18. Evans, E.P., Breckon, G., Ford, C.E., 1964. An airdrying method for meiotic preparations from mammalian testes. Cytogenetics 3, 289–294.CrossRefGoogle Scholar
  19. Hsu, T., Patton, J., 1969. Bone marrow preparations for chromosome studies. In: Benirschke, K. (Ed.), Comparative Mammalian Cytogenetics. Springer, Berlin, pp. 454–460.CrossRefGoogle Scholar
  20. Iwasa, M.A., Obara, Y., Kitihara, E., Kimura, Y., 1999. Synaptonemal complex analysis in the XY chromosomes of six taxa of Clethrionomys and Eothenomys from Japan. Hereditas 111, 295–304.Google Scholar
  21. Jiménez, R., Carnero, A., Burgos, M., Sánchez, A., Díaz de la Guardia, R., 1991. Achiasmatic giant sex chromosomes in the vole Microtus cabrerae (Rodentia, Muridae). Cytogenet. Cell Genet. 57, 56–58.CrossRefGoogle Scholar
  22. Jaarola, M., Martínková, N., Gündüz, I., Brunhoff, C., Zima, J., Nadachowski, A., Amori, G., Bulatova, N.S., Chondropoulos, B., Fraguedakis-Tsolis, S., Gonzáilez-Esteban, J., José López-Fuster, M., Kandaurov, A.S., Kefelioğlu, H., da Luz Mathias, M., Villate, I., Searle, J.B., 2004. Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 33, 647–663.CrossRefGoogle Scholar
  23. Megias-Nogales, B., Marchal, J.A., Acosta, M.J., Bullejos, M., Diaz De La Guardia, R., Sanchez, A., 2003. Sex chromosomes pairing in two Arvicolidae species: Microtus nivalis and Arvicola sapidus. Hereditas 138, 114–121.CrossRefGoogle Scholar
  24. Mekada, K, Harada, M, Lin, L.K., Koyasu, K., Borodin, P.M., Oda, S.I., 2001. Pattern of X-Y chromosome pairing in the Taiwan vole, Microtus kikuchii. Genome 44, 27–31.CrossRefGoogle Scholar
  25. Mitsainas, G.P., Rovatsos, M.T., Rizou, E.I., Giagia-Athanasopoulou, E.B., 2009. Sex chromosome variability outlines the pathway to the chromosomal evolution in Microtus thomasi (Rodentia, Arvicolinae). Biol. J. Linn. Soc. 96, 685–695.CrossRefGoogle Scholar
  26. Mitsainas G.P., Rovatsos M.T., Giagia-Athanasopoulou E.B., 2008. Heterochromatin study and geographical distribution of Microtus species (Rodentia, Arvicolinae) from Greece. doi: Scholar
  27. Petrov, B., Zivkovic, S., 1972. Zur Kenntnis der Thomas-Kleinwühlmaus, Pitymys thomasi (Barret-Hamilton, 1903), eines der wenig bekannten Säugetiere Jugoslawiens. Säugetierk. Mitt. 20, 249–258.Google Scholar
  28. Petrov, B., Zivkovic, S., 1979. Present knowledge on the systematics and distribution of Pitymys (Rodentia, Mammalia) in Yugoslavia. Biosistematica 5, 113–125.Google Scholar
  29. Rovatsos, M.T., Mitsainas, G.P., Stamatopoulos, C., Giagia-Athanasopoulou, E.B., 2008. First reports of XXY aneuploidy in natural populations of Thomas’ pine vole Microtus thomasi (Rodentia: Arvicolidae) from Greece. Mamm. Biol. 5, 342–349.CrossRefGoogle Scholar
  30. Rubtsov, N.B., Rubtsova, N.V., Anopriyenko, O.V., Karamysheva, T.V., Shevchenko, A.I., Mazurok, N.A., Nesterova, T.B., Zakian, S.M., 2002. Reorganization of the X chromosome in voles of the genus Microtus. Cytogenet. Genome Res. 99, 323–329.CrossRefGoogle Scholar
  31. Sumner, A.T., 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell. Res. 75, 304–306.CrossRefGoogle Scholar
  32. Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., Cosson, J.F., 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464.CrossRefGoogle Scholar
  33. Tryfonopoulos, G., Thanou, E., Chondropoulos, B., Fraguedakis-Tsolis, S., 2008. MtDNA analysis reveals the ongoing speciation on Greek populations of Microtus (T.) thomasi (Arvicolidae, Rodentia). Biol. J. Linn. Soc. 95, 117–130.CrossRefGoogle Scholar
  34. Wolf, K.W., Baumgart, K., Winking, H., 1988. Meiotic association and segregation of the achiasmatic giant sex chromosomes in the male field vole Microtus agrestis. Chromosoma 97, 124–133.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2010

Authors and Affiliations

  • Michail Th. Rovatsos
    • 1
  • George P. Mitsainas
    • 1
  • Gligor Paspali
    • 2
  • Selfo Oruci
    • 2
  • Eva B. Giagia-Athanasopoulou
    • 1
    Email author
  1. 1.Department of BiologyUniversity of PatrasPatrasGreece
  2. 2.Department of Biology and ChemistryUniversity Eqrem CabejGjirokasterAlbania

Personalised recommendations