Effects of environmental factors on organ mass of midday gerbil (Meriones meridianus Pallas, 1773)
Abstract
We measured and analyzed the organ masses of midday gerbils (Meriones meridianus Pallas, 1773) to test whether organ masses would respond to the variation in environmental factors. The results showed that organ masses (as expressed in log of organ dry mass) of midday gerbils changed significantly in different environmental gradients. Altitude was the best predictor of variation for heart dry mass, while it was frost-free period for the dry masses of kidneys, liver, and lung. The integrative effect of frost-free period and precipitation explained the 54.9% of the variables for kidney dry mass and 47.7% of the variables for liver dry mass. Precipitation and latitude explained 8.9% of the variables for spleen dry mass. We concluded that environmental factors had an integrative influence on organ masses. Midday gerbils’ heart mass became larger at higher altitude to respond to hypoxia and higher level of energy demand. Primary productivity (surrogated by frost-free period, precipitation, and their interaction) played the most significant role in determining the organ masses of midday gerbils. When encountering unfavorable conditions, midday gerbils had the tendency to grow larger organ masses to promote organ function.
Keywords
Midday gerbil Meriones meridianus Environmental factors Phenotypic variation Organ massPreview
Unable to display preview. Download preview PDF.
References
- Ashton, K.G., 2004. Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integr. Comp. Biol. 44, 403–412.PubMedCrossRefPubMedCentralGoogle Scholar
- Ashton, K.G., Tracy, M.C., Queiroz, A.d., 2000. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 389–415.CrossRefGoogle Scholar
- Bacigalupe, L.D., Nespolo, R.F., Bustamante, D.M., Bozinovic, F., 2004. The quantitative genetics of sustained energy budget in a wild mouse. Evolution 58, 421–429.PubMedCrossRefPubMedCentralGoogle Scholar
- Bergmann, C., 1847. Über die Verhältnisse der Warmeökonomie der Tiere zu ihrer Grösse. Göttinger Stud. 3, 595–708.Google Scholar
- Blackburn, T.M., Hawkins, A.B., 2004. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724.CrossRefGoogle Scholar
- Boyce, M.S., 1978. Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia 36, 1–19.PubMedCrossRefGoogle Scholar
- Bracheta, S., Olivierib, I., Godellea, B., Kleina, E., Frascaria-Lacostea, N., Gouyon, P.-H., 1999. Dispersal and metapopulation viability in a heterogeneous landscape. J. Theor. Biol. 198, 479–495.CrossRefGoogle Scholar
- Burri, P.H., Weibel, E.R., 1971. Morphometric estimation of pulmonary diffusion capacity. II. Effects of Po2 on the growing lung. Respir. Physiol. 11, 247–264.PubMedCrossRefGoogle Scholar
- Chappell, M.A., Hayes, J.P., Snyder, L.R.G., 1988. Hemoglobin polymorphisms in deer mice (Peromyscus maniculatus): physiology of beta-globin variants and alpha-globin recombinants. Evolution 42, 681–688.PubMedGoogle Scholar
- Dunbrack, R.L., Ramsay, M.A., 1993. The allometry of mammalian adaptations to seasonal environments: a critique of the fasting endurance hypothesis. Oikos 66, 336–342.CrossRefGoogle Scholar
- Freckleton, R.P., Harvey, P.H., Pagel, M., 2003. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825.PubMedCrossRefGoogle Scholar
- Gabriel, W., 2005. How stress selects for reversible phenotypic plasticity. J. Evol. Biol. 18, 873–883.PubMedCrossRefGoogle Scholar
- Garland Jr., T., Kelly, S.A., 2006. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361.PubMedCrossRefGoogle Scholar
- Hammond, K.A., Roth, J., Janes, D.N., Dohm, M.R., 1999. Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus. Physiol. Biochem. Zool 72, 613–622.PubMedCrossRefPubMedCentralGoogle Scholar
- Hammond, K.A., Szewczak, J., Król, E., 2001. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient. J. Exp. Biol. 204, 1991–2000.PubMedGoogle Scholar
- Hanski, I., Ovaskainen, O., 2003. Metapopulation theory for fragmented landscapes. Theor. Popul. Biol. 64, 119–127.PubMedCrossRefPubMedCentralGoogle Scholar
- Henderson, K.K., Wagner, H., Favret, F., Britton, S.L., Koch, L.G., Wagner, P.D., Gonzalez, N.C., 2002. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J. Appl. Physiol. 93, 1265–1274.PubMedCrossRefPubMedCentralGoogle Scholar
- Hochachka, P.W., Somero, G.N., 2002. In: Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, New York.Google Scholar
- Hock, R.J., 1961. Effect of altitude on endurance running. J. Appl. Physiol. 16, 435–438.PubMedCrossRefGoogle Scholar
- Hock, R.J., 1964. In: Physiological Responses of Deer Mice to Various Native Altitudes. Macmillan, New York.CrossRefGoogle Scholar
- Hoppeler, H., Altpeter, E., Wagner, M., Turner, D.L., Hokanson, J., König, M., Stalder-Navarro, V.P., Weibel, E.R., 1995. Cold acclimation and endurance training in guinea pigs: changes in lung, muscle and brown fat tissue. Respir. Physiol. 101, 189–198.PubMedCrossRefGoogle Scholar
- Hsia, C.C., 2001. Coordinated adaptation of oxygen transport in cardiopulmonary disease. Circulation 104, 963–969.PubMedCrossRefGoogle Scholar
- James, F., 1970. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390.CrossRefGoogle Scholar
- Konarzewski, M., Diamond, J.M., 1994. Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physil. Zool 67, 1186–1212.CrossRefGoogle Scholar
- Lenfant, C., 1973. High altitude adaptation in mammals. Am. Zool 13, 447–456.CrossRefGoogle Scholar
- Liao, J., Zhang, Z., Liu, N., 2006. Altitudinal variation of skull size in Daurian pika (Ochotona daurica Pallas, 1868). Acta Zool. Hung 52, 319–329.Google Scholar
- Luo, Z., Chen, W., Gao, W., 2000. Fauna sinica, Mammalia-Rodentia part III: Cricetidae. Science Press, Beijing.Google Scholar
- Maina, J.N., 2000. Comparative respiratory morphology: themes and principles in the design and construction of the gas exchangers. Anat. Rec. 261, 25–44.PubMedCrossRefGoogle Scholar
- Mueller, P., Diamond, J., 2001. Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proc. Natl. Acad. Sci. USA 98, 12550–12554.PubMedCrossRefGoogle Scholar
- Ochocińska, D., Taylor, J., 2003. Bergmann’s rule in shrews: geographical variation of body size in Palearctic sorex species. Biol. J. Linn. Soc. 78, 365–381.CrossRefGoogle Scholar
- Piersma, T., Lindström, A., 1997. Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol. Evol. 12, 134–138.PubMedCrossRefGoogle Scholar
- Rezende, E.L., Gomes, F.R., Ghalambor, C.K., Russell, G.A., Chappell, M.A., 2005. An evolutionary frame of work to study physiological adaptation to high altitudes. Rev. Chil. Hist. Nat. 78, 23–336.CrossRefGoogle Scholar
- Rosenzweig, M.L., 1968. The strategy of body size in mammalian carnivores. Am. Midl. Nat. 80, 299–315.CrossRefGoogle Scholar
- Searcy, W.A., 1980. Optimum body size at different temperatures: an energetic explanation of Bergmann’s rule. J. Theor. Biol. 83, 579–594.PubMedCrossRefGoogle Scholar
- Selman, C., Lumsden, S., Bunger, L., Hill, W.G., Speakman, J., 2001. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J. Exp. Biol. 204, 777–784.PubMedGoogle Scholar
- Snyder, L.R.G., 1981. Deer mouse hemoglobins: is there genetic adaptation to high altitude?. Bioscience 31, 299–304.CrossRefGoogle Scholar
- Spicer, J.I., Burggren, W.W., 2003. Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106, 91–99.PubMedCrossRefGoogle Scholar
- Steudel, K.L., Porter, W.P., Sher, D., 1994. The biophysics of Bergmann’s rule: a comparison of the effects of pelage and body size variation on metabolic rate. Can. J. Zool 72, 70–77.CrossRefGoogle Scholar
- Taylor, C.R., Weibel, E.R., Weber, J., Vock, R., Hoppeler, H., Roberts, T.J., Brichon, G., 1996. Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure. J. Exp. Biol. 199, 1643–1649.PubMedGoogle Scholar
- Timiras, P.S., Krum, A.A., Pace, N., 1957. Body and organ weights of rats during acclimatization to an altitude of 12,470 feet. Am. J. Physiol. 191, 598–640.PubMedCrossRefGoogle Scholar
- Wakeley, J., Aliacar, N., 2001. Gene genealogies in a metapopulation. Genetics 159, 893–905.PubMedPubMedCentralGoogle Scholar
- Wang, T., Xu, W., 1992. In: Glires (Rodentia and Lagomorpha) Fauna of Shaanxi Province. Shaanxi Normal University Press, Xi’an.Google Scholar
- Weibel, E.R., 2000. In: Symmorphosis: On Form and Function in Shaping Life. Harvard University Press, Cambridge, MA.Google Scholar
- Yom-Tov, Y., Geffen, E., 2006. Geographic variation in body size: the effects of amient temperature and precipitation. Oecologia 148, 213–218.PubMedCrossRefGoogle Scholar
- Yom-Tov, Y., Nix, H., 1986. Climatological correlates for body size of five species of Australian mammals. Biol. J. Linn. Soc. 29, 245–262.CrossRefGoogle Scholar
- Zhou, Y., Wang, L., Bao, W., Hou, X., Dong, W., 1997. Analysis on reproductive features of Meriones meridianus population. Acta. Theriol. Sin. 19, 62–67.Google Scholar