Mammalian Biology

, Volume 75, Issue 5, pp 381–388 | Cite as

Effects of environmental factors on organ mass of midday gerbil (Meriones meridianus Pallas, 1773)

  • Jicheng Liao
  • Ying Wang
  • Liming Zhao
  • Naifa LiuEmail author
Original Investigation


We measured and analyzed the organ masses of midday gerbils (Meriones meridianus Pallas, 1773) to test whether organ masses would respond to the variation in environmental factors. The results showed that organ masses (as expressed in log of organ dry mass) of midday gerbils changed significantly in different environmental gradients. Altitude was the best predictor of variation for heart dry mass, while it was frost-free period for the dry masses of kidneys, liver, and lung. The integrative effect of frost-free period and precipitation explained the 54.9% of the variables for kidney dry mass and 47.7% of the variables for liver dry mass. Precipitation and latitude explained 8.9% of the variables for spleen dry mass. We concluded that environmental factors had an integrative influence on organ masses. Midday gerbils’ heart mass became larger at higher altitude to respond to hypoxia and higher level of energy demand. Primary productivity (surrogated by frost-free period, precipitation, and their interaction) played the most significant role in determining the organ masses of midday gerbils. When encountering unfavorable conditions, midday gerbils had the tendency to grow larger organ masses to promote organ function.


Midday gerbil Meriones meridianus Environmental factors Phenotypic variation Organ mass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashton, K.G., 2004. Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integr. Comp. Biol. 44, 403–412.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ashton, K.G., Tracy, M.C., Queiroz, A.d., 2000. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 389–415.CrossRefGoogle Scholar
  3. Bacigalupe, L.D., Nespolo, R.F., Bustamante, D.M., Bozinovic, F., 2004. The quantitative genetics of sustained energy budget in a wild mouse. Evolution 58, 421–429.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bergmann, C., 1847. Über die Verhältnisse der Warmeökonomie der Tiere zu ihrer Grösse. Göttinger Stud. 3, 595–708.Google Scholar
  5. Blackburn, T.M., Hawkins, A.B., 2004. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724.CrossRefGoogle Scholar
  6. Boyce, M.S., 1978. Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia 36, 1–19.PubMedCrossRefGoogle Scholar
  7. Bracheta, S., Olivierib, I., Godellea, B., Kleina, E., Frascaria-Lacostea, N., Gouyon, P.-H., 1999. Dispersal and metapopulation viability in a heterogeneous landscape. J. Theor. Biol. 198, 479–495.CrossRefGoogle Scholar
  8. Burri, P.H., Weibel, E.R., 1971. Morphometric estimation of pulmonary diffusion capacity. II. Effects of Po2 on the growing lung. Respir. Physiol. 11, 247–264.PubMedCrossRefGoogle Scholar
  9. Chappell, M.A., Hayes, J.P., Snyder, L.R.G., 1988. Hemoglobin polymorphisms in deer mice (Peromyscus maniculatus): physiology of beta-globin variants and alpha-globin recombinants. Evolution 42, 681–688.PubMedGoogle Scholar
  10. Dunbrack, R.L., Ramsay, M.A., 1993. The allometry of mammalian adaptations to seasonal environments: a critique of the fasting endurance hypothesis. Oikos 66, 336–342.CrossRefGoogle Scholar
  11. Freckleton, R.P., Harvey, P.H., Pagel, M., 2003. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825.PubMedCrossRefGoogle Scholar
  12. Gabriel, W., 2005. How stress selects for reversible phenotypic plasticity. J. Evol. Biol. 18, 873–883.PubMedCrossRefGoogle Scholar
  13. Garland Jr., T., Kelly, S.A., 2006. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361.PubMedCrossRefGoogle Scholar
  14. Hammond, K.A., Roth, J., Janes, D.N., Dohm, M.R., 1999. Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus. Physiol. Biochem. Zool 72, 613–622.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hammond, K.A., Szewczak, J., Król, E., 2001. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient. J. Exp. Biol. 204, 1991–2000.PubMedGoogle Scholar
  16. Hanski, I., Ovaskainen, O., 2003. Metapopulation theory for fragmented landscapes. Theor. Popul. Biol. 64, 119–127.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Henderson, K.K., Wagner, H., Favret, F., Britton, S.L., Koch, L.G., Wagner, P.D., Gonzalez, N.C., 2002. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J. Appl. Physiol. 93, 1265–1274.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hochachka, P.W., Somero, G.N., 2002. In: Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, New York.Google Scholar
  19. Hock, R.J., 1961. Effect of altitude on endurance running. J. Appl. Physiol. 16, 435–438.PubMedCrossRefGoogle Scholar
  20. Hock, R.J., 1964. In: Physiological Responses of Deer Mice to Various Native Altitudes. Macmillan, New York.CrossRefGoogle Scholar
  21. Hoppeler, H., Altpeter, E., Wagner, M., Turner, D.L., Hokanson, J., König, M., Stalder-Navarro, V.P., Weibel, E.R., 1995. Cold acclimation and endurance training in guinea pigs: changes in lung, muscle and brown fat tissue. Respir. Physiol. 101, 189–198.PubMedCrossRefGoogle Scholar
  22. Hsia, C.C., 2001. Coordinated adaptation of oxygen transport in cardiopulmonary disease. Circulation 104, 963–969.PubMedCrossRefGoogle Scholar
  23. James, F., 1970. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390.CrossRefGoogle Scholar
  24. Konarzewski, M., Diamond, J.M., 1994. Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physil. Zool 67, 1186–1212.CrossRefGoogle Scholar
  25. Lenfant, C., 1973. High altitude adaptation in mammals. Am. Zool 13, 447–456.CrossRefGoogle Scholar
  26. Liao, J., Zhang, Z., Liu, N., 2006. Altitudinal variation of skull size in Daurian pika (Ochotona daurica Pallas, 1868). Acta Zool. Hung 52, 319–329.Google Scholar
  27. Luo, Z., Chen, W., Gao, W., 2000. Fauna sinica, Mammalia-Rodentia part III: Cricetidae. Science Press, Beijing.Google Scholar
  28. Maina, J.N., 2000. Comparative respiratory morphology: themes and principles in the design and construction of the gas exchangers. Anat. Rec. 261, 25–44.PubMedCrossRefGoogle Scholar
  29. Mueller, P., Diamond, J., 2001. Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proc. Natl. Acad. Sci. USA 98, 12550–12554.PubMedCrossRefGoogle Scholar
  30. Ochocińska, D., Taylor, J., 2003. Bergmann’s rule in shrews: geographical variation of body size in Palearctic sorex species. Biol. J. Linn. Soc. 78, 365–381.CrossRefGoogle Scholar
  31. Piersma, T., Lindström, A., 1997. Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol. Evol. 12, 134–138.PubMedCrossRefGoogle Scholar
  32. Rezende, E.L., Gomes, F.R., Ghalambor, C.K., Russell, G.A., Chappell, M.A., 2005. An evolutionary frame of work to study physiological adaptation to high altitudes. Rev. Chil. Hist. Nat. 78, 23–336.CrossRefGoogle Scholar
  33. Rosenzweig, M.L., 1968. The strategy of body size in mammalian carnivores. Am. Midl. Nat. 80, 299–315.CrossRefGoogle Scholar
  34. Searcy, W.A., 1980. Optimum body size at different temperatures: an energetic explanation of Bergmann’s rule. J. Theor. Biol. 83, 579–594.PubMedCrossRefGoogle Scholar
  35. Selman, C., Lumsden, S., Bunger, L., Hill, W.G., Speakman, J., 2001. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J. Exp. Biol. 204, 777–784.PubMedGoogle Scholar
  36. Snyder, L.R.G., 1981. Deer mouse hemoglobins: is there genetic adaptation to high altitude?. Bioscience 31, 299–304.CrossRefGoogle Scholar
  37. Spicer, J.I., Burggren, W.W., 2003. Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106, 91–99.PubMedCrossRefGoogle Scholar
  38. Steudel, K.L., Porter, W.P., Sher, D., 1994. The biophysics of Bergmann’s rule: a comparison of the effects of pelage and body size variation on metabolic rate. Can. J. Zool 72, 70–77.CrossRefGoogle Scholar
  39. Taylor, C.R., Weibel, E.R., Weber, J., Vock, R., Hoppeler, H., Roberts, T.J., Brichon, G., 1996. Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure. J. Exp. Biol. 199, 1643–1649.PubMedGoogle Scholar
  40. Timiras, P.S., Krum, A.A., Pace, N., 1957. Body and organ weights of rats during acclimatization to an altitude of 12,470 feet. Am. J. Physiol. 191, 598–640.PubMedCrossRefGoogle Scholar
  41. Wakeley, J., Aliacar, N., 2001. Gene genealogies in a metapopulation. Genetics 159, 893–905.PubMedPubMedCentralGoogle Scholar
  42. Wang, T., Xu, W., 1992. In: Glires (Rodentia and Lagomorpha) Fauna of Shaanxi Province. Shaanxi Normal University Press, Xi’an.Google Scholar
  43. Weibel, E.R., 2000. In: Symmorphosis: On Form and Function in Shaping Life. Harvard University Press, Cambridge, MA.Google Scholar
  44. Yom-Tov, Y., Geffen, E., 2006. Geographic variation in body size: the effects of amient temperature and precipitation. Oecologia 148, 213–218.PubMedCrossRefGoogle Scholar
  45. Yom-Tov, Y., Nix, H., 1986. Climatological correlates for body size of five species of Australian mammals. Biol. J. Linn. Soc. 29, 245–262.CrossRefGoogle Scholar
  46. Zhou, Y., Wang, L., Bao, W., Hou, X., Dong, W., 1997. Analysis on reproductive features of Meriones meridianus population. Acta. Theriol. Sin. 19, 62–67.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2009

Authors and Affiliations

  • Jicheng Liao
    • 1
  • Ying Wang
    • 1
  • Liming Zhao
    • 1
  • Naifa Liu
    • 1
    Email author
  1. 1.School of Life SciencesLanzhou UniversityLanzhouChina

Personalised recommendations