Mammalian Biology

, Volume 75, Issue 4, pp 294–301 | Cite as

A methodological approach to assess the small mammal community diversity in the temperate rainforest of Patagonia

  • Francisco E. FontúrbelEmail author
Original Investigation


Assessing small mammal diversity is a common procedure, which usually employs widespread standard techniques, for gathering information for a wide range of studies. Traditional methods, however, may be biased against capturing arboreal marsupials, such as Dromiciops gliroides, an endemic marsupial currently considered a rare species in the Patagonian temperate rainforest due to the low abundances reported previously. I tested a new capturing methodology to assess the small mammal diversity of an old-growth forest in Patagonia, based on a randomized and balanced design, which incorporated a combination of different trap types, bait types, and placement heights. The proposed methodology included four trap types (two for live-capturing: wire-mesh and Sherman traps, and two sign-recording traps for tracks and hair), two types of bait (banana and rolled oats), and two trap placements (ground level and 1.5–2.5 m above the ground). Trap type, bait type, and height of placement all had significantly different effects on capturing and detecting rodents or marsupials; environmental variables at the trap location also affected the ability to detect rodents and marsupials. Traditional methods used for sampling small mammals performed well for rodents but are not effective for capturing marsupials and vice versa, showing species-specific sampling protocols. There is no single combination of trap-bait-height capable to assess the entire small mammal community, but the combination of the most effective protocol for rodents and the most effective protocol for marsupials guarantee better results.


Small mammals Diversity assessment Capture efficiency Sampling artifact Patagonian temperate rainforest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti, A., 2007. An Introduction to Categorical Data Analysis. Wiley Interscience, New Jersey.CrossRefGoogle Scholar
  2. Aizen, M.A., 2003. Influences of animal pollination and seed dispersal on winter flowering in a temperate mistletoe. Ecology 84, 2613–2627.CrossRefGoogle Scholar
  3. Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (Eds.), Second International Symposium of Information Theory. Akademiai Kiado, Budapest, pp. 276–281.Google Scholar
  4. Amico, G., Aizen, M.A., 2000. Mistletoe seed dispersal by a marsupial. Nature 408, 929–930.CrossRefGoogle Scholar
  5. Bozinovic, F., Ruiz, G., Rosenmann, M., 2004. Energetics and torpor of a South American “living fossil,” the microbiotheriid Dromiciops gliroides. Journal of Comparative Physiology 174, 293–297.CrossRefGoogle Scholar
  6. Brower, J.E., Zar, J.H., von Ende, C.N., 1998. Field and Laboratory Methods for General Ecology. WCB/McGraw-Hill, Boston.Google Scholar
  7. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Inference: A Practical Information-Theoretic Approach. Springer, New York.Google Scholar
  8. Carey, A.B., Witt, J.W., 1991. Track counts as indices to abundances of arboreal rodents. Journal of Mammalogy 72, 192–194.CrossRefGoogle Scholar
  9. Gallardo-Santis, A., Simonetti, J.A., Vásquez, R.A., 2005. Influence of tree diameter on climbing ability of small mammals. Journal of Mammalogy 86, 969–973.CrossRefGoogle Scholar
  10. Gannon, W.L., Sikes, R.S., Animal Care and Use Committee, 2007. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 88, 809–823.CrossRefGoogle Scholar
  11. García, D., Rodríguez-Cabal, M.A., Amico, G., 2009. Seed dispersal by a frugivorous marsupial shapes the spatial scale of a mistletoe population. Journal of Ecology 97, 217–229.CrossRefGoogle Scholar
  12. Hershkovitz, P., 1999. Dromiciops gliroides Thomas, 1894, last of the Microbiotheria (Marsupialia), with a review of the family Microbiotheriidae. Fieldiana Zoology 93, 1–60.Google Scholar
  13. Jiménez, J.E., Rageot, R., 1979. Notas sobre la biología del monito del monte (Dromiciops australis Philippi 1893). Anales del Museo de Historia Natural de Valparaíso (Chile) 12, 83–88.Google Scholar
  14. Kelt, D.A., 2000. Small mammal communities in rainforest fragments in central southern Chile. Biological Conservation 92, 345–358.CrossRefGoogle Scholar
  15. Kelt, D.A., Martínez, D.R., 1989. Notes on distribution and ecology of two marsupials endemic to the Valdivian forests of southern South America. Journal of Mammalogy 70, 220–224.CrossRefGoogle Scholar
  16. Kelt, D.A., Meserve, P.L., Lang, B.K., 1994. Quantitative habitat associations of small mammals in a temperate rainforest in southern Chile: empirical patterns and the importance of ecological scale. Journal of Mammalogy 75, 890–904.CrossRefGoogle Scholar
  17. Kelt, D.A., Taper, M.L., Meserve, P.L., 1995. Assessing the impact of competition on community assembly: a case study using small mammals. Ecology 76, 1283–1296.CrossRefGoogle Scholar
  18. Lindenmayer, D.B., Cunningham, R.B., Pope, M.L., Donnely, C.F., 1999. The response of arboreal marsupials to landscape context: a large-scale fragmentation study. Ecological Applications 9, 594–611.CrossRefGoogle Scholar
  19. Lobos, G., Charrier, A., Carrasco, G., Palma, R.E., 2006. Presence of Dromiciops gliroides (Microbiotheria: Microbiotheriidae) in the deciduous forests of central Chile. Mammalian Biology 70, 376–380.CrossRefGoogle Scholar
  20. Marshall, L.G., 1978. Dromiciops australis. Mammalian Species 99, 1–5.Google Scholar
  21. Meserve, P.L., 1981. Resource partitioning in a Chilean semi-arid small mammal community. Journal of Animal Ecology 50, 745–757.CrossRefGoogle Scholar
  22. Meserve, P.L., Lang, B.K., Patterson, B.D., 1988. Trophic relationships of small mammals in a Chilean temperate rainforest. Journal of Mammalogy 69, 721–730.CrossRefGoogle Scholar
  23. Meserve, P.L., Murúa, R., Lopetegui, O., Rau, J.R., 1982. Observations on the small mammal fauna of a primary temperate rainforest in southern Chile. Journal of Mammalogy 63, 315–317.CrossRefGoogle Scholar
  24. Meserve, P.L., Martínez, D.R., Rau, J.R., Murúa, R., Lang, B.K., Muñoz-Pedreros, A., 1999. Comparative demography and diversity of small mammals. Journal of Mammalogy 80, 880–890.CrossRefGoogle Scholar
  25. Mills, J.N., Yates, T.L., Childs, J.E., Parmenter, R.R., Ksiazek, T.G., Rollin, P.E., Peters, C.J., 1995. Guidelines for working with rodents potentially infected with hanta-virus. Journal of Mammalogy 76, 716–722.CrossRefGoogle Scholar
  26. Mortelliti, A., Boitani, L., 2008. Inferring red squirrel (Sciurus vulgaris) absence with hair tubes surveys: a sampling protocol. European Journal of Wildlife Research 54, 353–356.CrossRefGoogle Scholar
  27. Patterson, B.D., Meserve, P.L., Lang, B.K., 1989. Distribution and abundance of small mammals along an elevational transect in temperate rainforest of Chile. Journal of Mammalogy 70, 67–78.CrossRefGoogle Scholar
  28. Patterson, B.D., Meserve, P.L., Lang, B.K., 1990. Quantitative habitat associations of small mammals along an elevational transect in temperate rainforest of Chile. Journal of Mammalogy 71, 620–633.CrossRefGoogle Scholar
  29. Rau, J.R., Martínez, D.R., Low, J.R., Tillería, M.S., 1995. Depredaciőn por zorros chillas (Pseudalopex griseus) sobre micromamíferos cursioriales, escansoriales y arborícolas en un área silvestre protegida del sur de Chile. Revista Chilena de Historia Natural 68, 333–340.Google Scholar
  30. Rodríguez-Cabal, M.A., Aizen, M.A., Novaro, A.J., 2007. Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of South America. Biological Conservation 139, 195–202.CrossRefGoogle Scholar
  31. Rodríguez-Cabal, M.A., Amico, G., Novaro, A.J., Aizen, M.A., 2008. Population characteristics of Dromiciops gliroides (Phillipi, 1893), an endemic marsupial of the temperate forest of Patagonia. Mammalian Biology 73, 74–76.CrossRefGoogle Scholar
  32. Rudran, R., Foster, M.S., 1996. Conducting a survey to assess mammalian diversity. In: Wilson, D.E., Cole, F.R., Nichols, J.D., Rudran, R., Foster, M.S. (Eds.), Measuring and Monitoring Biological Diversity. Smithsonian Institution Press, Washington, pp. 71–80.Google Scholar
  33. Saavedra, B., Simonetti, J.A., 2001. New records of Dromiciops gliroides (Microbiotheria: Microbiotheriidae) and Geoxus valdivianus (Rodentia: Muridae) in central Chile: their implications for biogeography and conservation. Mammalia 65, 96–100.Google Scholar
  34. Simonetti, J.A., 1989. Microhabitat use by small mammals in central Chile. Oikos 56, 309–318.CrossRefGoogle Scholar
  35. StatSoft, 2004. Statistica, version 7: <>.
  36. Taylor, C.A., Raphael, M.G., 1988. Identification of mammal tracks from sooted track stations in the Pacific Northwest. California Fish and Game 74, 4–15.Google Scholar
  37. Umetsu, F., Metzger, J.P., Pardini, R., 2008. Importance of estimating matrix quality for modelling species distribution in complex tropical landscapes: a test with Atlantic forest small mammals. Ecography 31, 359–370.CrossRefGoogle Scholar
  38. Wheatley, M., Larsen, K., 2008. Differential space use inferred from live trapping versus telemetry: northern flying squirrels and fine spatial grain. Wildlife Research 35, 425–433.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2009

Authors and Affiliations

  1. 1.Laboratorio de Ecologia Terrestre, Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations