Advertisement

Mammalian Biology

, Volume 75, Issue 2, pp 146–150 | Cite as

Temperature trends and recent decline in body size of the stone marten Martes foina in Denmark

  • Yoram Yom-TovEmail author
  • Noam Leader
  • Shlomith Yom-Tov
  • Hans J. Baagøe
Original Investigation

Abstract

We studied a sample of 131 skulls of the stone marten Martes foina that were collected in Denmark between 1858 and 1999. Data were available for 37 years, but collection effort was not uniform throughout the study period and annual sample size varied between 1 and 27. We used principal component analysis (PCA) to combine the information of four skull measurements into a single variable (PC1). PC1 was then corrected for factors that significantly affected it (sex and longitude), and residual PC1 was used for further analysis in which we calculated trends in PC1 values during the study period. During the study period there was an increase in mean annual temperature in Denmark, but this increase was not continuous, as there was slight decrease in temperature between 1947 and 1965.

We found that skull size (and by implication body size) of the stone marten in Denmark had two periods of decrease and these two periods coincide with the periods of increase in mean annual temperature. These results may indicate that body size of the stone marten is sensitive to the change in ambient temperature, either due to a change in food availability that was caused by the increase in temperature, or decreased its size in accordance with Bergmann’s rule.

Keywords

Stone marten Martes foina Denmark Ambient temperature Skull size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaris-Sørensen, K., 2007. Fra istid til nutid. In: Baagøe, H.J., Jensen, T.S. (Eds.), Dansk Pattedyratlas. Gyldendal. (392pp). (English summary: Late and Post Glacial mammals in Denmark), pp. 312–321.Google Scholar
  2. Baker, A.J., 1980. Morphometric differentiation in New Zealand populations of the house sparrow (Passer domesticus). Evolution 34, 638–653.PubMedGoogle Scholar
  3. Bolton, B.L., Newsome, A.E., Merchant, J., 1982. Reproduction in the agile wallaby, Macropus agilis (Gould) in the tropical lowlands of the Northern territory: opportunism in a seasonal environment. Aust. J. Ecol. 7, 261–277.CrossRefGoogle Scholar
  4. Broekhuizen, S., 1999. Martes foina (Erxleben, 1777). In: Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Kryštufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralík, V., Zima, J. (Eds.), The Atlas of European Mammals. Poyser, London for the Societas Europaea Mammalogica, vol. 484, pp. 342–343.Google Scholar
  5. Cappelen, J., 2002. Yearly temperatures, precipitation, hours of bright sunshine and cloud cover for Denmark as a whole; 1873–2001. Danish Meteorological Institute, Technical Report 02-07.Google Scholar
  6. Corbet, G.B., 1978. The mammals of the Palaearctic Region: a taxonomic review. British Museum (Natural History), London.Google Scholar
  7. Ewer, R.F., 1973. The Carnivores. Cornell University Press, Ithaca, New York.Google Scholar
  8. Gosler, A.G., Greenwood, J.J.D., Perrins, C.M., 1995. Predation risk and the cost of being fat. Nature 377, 621–623.CrossRefGoogle Scholar
  9. Grizimek, B., 1990. Martes foina. In: Grizimek, B. (Ed.), Grizimek’s Encyclopedia of Mammals, vol. 3, sixth ed. McGraw-Hill, Boston, USA, pp. 411–412, 416, 442.Google Scholar
  10. Henry, C.J.K., Ulijaszek, S.J. (Eds.), 1996. Long-term Consequences of Early Environment. Cambridge University press, Cambridge.Google Scholar
  11. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge.Google Scholar
  12. Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? Trends. Ecol. Evol. 15, 56–61.CrossRefGoogle Scholar
  13. Johnston, R.F., Selander, R.K., 1971. Evolution in the house sparrow. II adaptive differentiation in North American populations. Evolution 25, 1–28.CrossRefGoogle Scholar
  14. Larsson, K., Forslund, P., 1991. Environmental induced morphological variation in the barnacle goose, Branta leucopis. J. Environ. Biol. 4, 619–636.Google Scholar
  15. Lepage, D., Gauthier, G., Reed, A., 1998. Seasonal variation in growth of greater snow goose goslings: the role of food supply. Oecologia 114, 226–235.CrossRefGoogle Scholar
  16. Lindstrom, J., 1999. Early development and fitness in birds and mammals. Trends. Ecol. Evol. 14, 343–348.CrossRefGoogle Scholar
  17. Lowther, P.E., Cink, C.L., 1992. House sparrow. In: Poole, A., Stettenheim, P., Gill, F. (Eds.), The Birds of North America No. 12. Philadelphia, Academy of Natural Sciences; Washington, DC, American Ornithologists’ Union.Google Scholar
  18. Madsen, A.B., Sørensen, V., Asferg, T., Baagøe, H.J., 2007. Stone marten Martes foina (Erxleben, 1777). In: Baagøe, H.J., Jensen, T.S. (Eds.), 2007: Dansk Pattedyratlas. Gyldendal (392pp). (English summary: Stone marten Martes foina (Erxleben, 1777)), pp. 202–205.Google Scholar
  19. Mayr, E., 1970. Populations, Species, and Evolution: An Abridgement of Animal Species and Evolution. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  20. Meiri, S., Dayan, T., Simberloff, D., 2004a. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 8, 579–588.CrossRefGoogle Scholar
  21. Meiri, S., Dayan, T., Simberloff, D., 2004b. Body size of insular carnivores: little support for the island rule. Am. Nat. 163, 469–479.CrossRefGoogle Scholar
  22. Millien, V., Lyons, S.K., Olson, L., Smith, F.A., Wilson, T., Yom-Tov, Y., 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecol. Lett. 9, 853–869.CrossRefGoogle Scholar
  23. Read, A.J., Gaskin, D.E., 1990. Changes in growth and reproduction of harbour porpoises, Phocoena phocoena, from the Bay of Fundy. Can. J. Fish. Aquat. Sci. 47, 2158–2163.CrossRefGoogle Scholar
  24. Reig, S., 1992. Geographical variation in pine marten (Martes martes) and beech marten (M. foina) in Europe. J. Mamm. 73, 744–769.CrossRefGoogle Scholar
  25. Romer, A.S., 1962. The Vertebrate Body. W.B. Saunders Company, Philadelphia.Google Scholar
  26. Schmidt, N.M., Jensen, P.M., 2003. Changes in mammalian body length over 175 years — adaptations to a fragmented landscape? Conserv. Ecol. 7, 6 [online] URL: <https://doi.org/www.consecol.org/vol7/iss2/art6>.CrossRefGoogle Scholar
  27. Selander, R.K., Johnston, R.F., 1967. Evolution in the house sparrow. Intra-population variation in North America. Condor 99, 217–248.CrossRefGoogle Scholar
  28. Smith, F.A., Browning, H., Shepherd, U.L., 1998. The influence of climate change on the body mass of woodrats Neotoma in arid region of New Mexico, USA. Ecography 21, 140–148.CrossRefGoogle Scholar
  29. Yom-Tov, Y., 2003. Body sizes of carnivores commensal with humans have increased over the past 50 years. Funct. Ecol. 17, 323–327.CrossRefGoogle Scholar
  30. Yom-Tov, Y., Yom-Tov, S., 2004. Climatic changes and body size in two species of Japanese rodents. Biol. J. Linn. Soc. 82, 263–267.CrossRefGoogle Scholar
  31. Yom-Tov, Y., Yom-Tov, S., 2005. Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus Kerr in Alaska. J. Anim. Ecol. 74, 803–808.CrossRefGoogle Scholar
  32. Yom-Tov, Y., Yom-Tov, S., Baagøe, H.J., 2003. Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the 20th century: an effect of improved diet? Evol. Ecol. Res. 5, 1037–1048.Google Scholar
  33. Yom-Tov, Y., Heggberget, T.M., Wiig, O., Yom-Tov, S., 2006. Body size changes in the Norwegian otter: the possible effects of food availability and global warming. Oecologia 150, 155–160.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2008

Authors and Affiliations

  • Yoram Yom-Tov
    • 1
    Email author
  • Noam Leader
    • 2
  • Shlomith Yom-Tov
    • 1
  • Hans J. Baagøe
    • 3
  1. 1.Department of ZoologyTel Aviv UniversityTel AvivIsrael
  2. 2.Nature and Parks AuthorityJerusalemIsrael
  3. 3.The Natural History Museum of Denmark, Zoological MuseumUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations