Advertisement

Mammalian Biology

, Volume 74, Issue 4, pp 274–285 | Cite as

Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck

  • Eduardo FerreiraEmail author
  • Luís Souto
  • Amadeu M. V. M. Soares
  • Carlos Fonseca
Original Investigation

Abstract

The present study assesses the degree of genetic structure and the presence of recent genetic bottlenecks in the wild boar population in Portugal. One hundred and ten individuals were sampled after capture during organised legal drive hunts, conducted in 58 municipalities across the continental territory, during the game seasons of 2002/2003 and 2003/2004. Individuals were genetically typed at six microsatellite loci using multiplex PCR amplification. Significant deviations from Hardy–Weinberg equilibrium were found for the total population of wild boar in Portugal. Wild boar population genetic structure was assessed using Bayesian methods, suggesting the existence of three subpopulations (North, Centre and South). Tests were conducted to detect the presence of potential migrants and hybrids between subpopulations. After exclusion of these individuals, three sets of wild boars representative of respective subpopulations were distinguished and tested for the effects of recent bottlenecks. Genetic distances between pairs of subpopulations were quantified using FST and RST estimators, revealing a variation of 0.138–0.178 and 0.107–0.198, respectively. On the basis of genetic and distribution data for Portuguese wild boar from the beginning of the 20th century, a model of strong demographic decline and contraction to isolated refuge areas at the national level, followed by a recovery and expansion towards former distribution limits is suggested. Some evidence points to present admixture among subpopulations in contact areas.

Keywords

Sus scrofa L. Genetic structure Bottleneck Microsatellites Bayesian statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E.C., Thompson, E.A., 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217–1229.PubMedPubMedCentralGoogle Scholar
  2. Andersone, Z., Lucchini, V., Randi, E., Ozolins, J., 2002. Hybridisation between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers. Mamm. Biol. 67, 79–90.CrossRefGoogle Scholar
  3. Archibald, A.L., Haley, C.S., Brown, J.F., Couperwhite, S., McQueen, H.A., Nicholson, D., Coppieters, W., Vandeweghe, A., Stratil, A., Wintero, A.K., Fredholm, M., Larsen, N.J., Nielsen, V.H., Milan, D., Woloszyn, N., Robic, A., Dalens, M., Riquet, J., Gellin, J., Caritez, J.C., Burgaud, G., Ollivier, L., Bidanel, J.P., Vaiman, M., Renard, C., Gelderman, H., Davoli, R., Ruyter, D., Verstege, E.J.M., Groenen, M.A.M., Davies, W., Hoyheim, B., Keiserud, A., Andersson, L., Ellegren, H., Johansson, M., Marklund, L., Miller, J.R., Dear, D.V.A., Signer, E., Jeffreys, A.J., Moran, C., Letissier, P., Muladno, Rothschild, M.F., Tuggle, C.K., Vaske, D., Helm, J., Liu, H.C., 1995. The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm. Genome 6, 157–175.PubMedCrossRefGoogle Scholar
  4. Balloux, F., Lugon-Moulin, N., 2002. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11, 155–165.PubMedCrossRefGoogle Scholar
  5. Cabral, M.J., Almeida, J., Almeida, P.R., Delinger, T., Ferrand de Almeida, N., Oliveira, M.E., Palmeirim, J.M., Queiroz, A.L., Rogado, L., Santos-Reis, M., 2005. Livro Vermelho dos Vertebrados de Portugal. Instituto de Conservação da Natureza, Lisboa (in Portuguese).Google Scholar
  6. Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.PubMedPubMedCentralGoogle Scholar
  7. Cornuet, J., Piry, S., Luikart, G., Estoup, A., Solignac, M., 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000.PubMedPubMedCentralGoogle Scholar
  8. England, P.R., Osler, G.H.R., Woodworth, L.M., Montgomery, M.E., Briscoe, D.A., Frankham, R., 2003. Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv. Genet. 4, 595–604.CrossRefGoogle Scholar
  9. Fernandez-De-Mera, I., Gortazar, C., Vicente, J., Höfle, U., Fierro, Y., 2003. Wild boar helminths: risks in animal translocations. Vet. Parasitol. 115, 335–341.PubMedCrossRefGoogle Scholar
  10. Ferreira, E., Souto, L., Soares, A.M.V.M., Fonseca, C., 2006. Genetic structure of the wild boar (Sus scrofa L.) population in Portugal. Wildl. Biol. Pract. 2 (1), 17–25.Google Scholar
  11. Fickel, J., Hohmann, U., 2006. A methodological approach for non-invasive sampling for population size estimates in wild boars (Sus scrofa). Eur. J. Wildl. Res. 52, 28–33.CrossRefGoogle Scholar
  12. Fonseca, C., 2004. Population dynamics and management of wild boar (Sus scrofa L.) in Central Portugal and Southeastern Poland. PhD Thesis, University of Aveiro.Google Scholar
  13. Fonseca, C., Santos, P., Monzón, A., Bento, P., Alves da Silva, A., Alves, J., Silvério, A., Soares, A.M.V.M., Petrucci-Fonseca, F., 2004. Reproduction in the Wild Boar (Sus scrofa Linnaeus, 1758) populations of Portugal. In: C. Fonseca, J. Herrero, A. Luis, A.M.V.M. Soares (Eds.), Wild Boar Research 2002: A Selection and Edited Papers from the 4th International Wild Boar Symposium. Galemys 16, 53–65.Google Scholar
  14. Garza, J.C., Williamson, E.G., 2001. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Giuffra, E., Kijas, J.M.H., Amarger, V., Carlborg, Ö., Jeon, J.T., Andersson, L., 2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785–1791.PubMedPubMedCentralGoogle Scholar
  16. Goudet, J., 1995. FSTAT (vers. 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486 (upgrade to vers. 2.9.3. in 2001).CrossRefGoogle Scholar
  17. Guo, S.W., Thompson, E.A., 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48, 361–372.PubMedCrossRefGoogle Scholar
  18. Hampton, J.O., Spencer, P.B.S., Alpers, D.L., Twigg, L.E., Woolnough, A.P., Doust, J., Higgs, T., Pluske, J., 2004. Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: a case study with feral pigs. J. Appl. Ecol. 41, 735–743.CrossRefGoogle Scholar
  19. Harcet, M., Dikic, M., Gamulin, V., 2006. Low Genetic diversity of the Turopolje Pig Breed. Food Technol. Biotechnol. 44 (1), 105–109.Google Scholar
  20. Hardy, O.J., Charbonnel, N., Fréville, H., Heuertz, M., 2003. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163, 1467–1482.PubMedPubMedCentralGoogle Scholar
  21. Hartl, D.L., Clark, A.G., 2007. Principles on Population Genetics, fourth ed. Sinauer Associates Inc., Sunderland.Google Scholar
  22. Hedrick, P.W., 1999. Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53 (2), 313–318.PubMedCrossRefGoogle Scholar
  23. Hellborg, L., Walker, C.W., Rueness, E.K., Stacy, J.E., Kojola, I., Valdmann, H., Vilà, C., Zimmermann, B., Jakobsen, K.S., Ellegren, H., 2002. Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis. Conserv. Genet. 3, 97–111.CrossRefGoogle Scholar
  24. Jarne, P., Lagoda, P.J.L., 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11 (10), 424–429.PubMedCrossRefGoogle Scholar
  25. Kalinowski, S.T., 2002. Evolutionary and statistical properties of three genetic distances. Mol. Ecol. 11, 1263–1273.PubMedCrossRefGoogle Scholar
  26. Keuling, O., Stier, N., Roth, M., 2007. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res., doi:10.1007/s10344-007-0157-4.CrossRefGoogle Scholar
  27. Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Lowden, S., Finlayson, H., Brand, T., Willerslev, E., Rowley-Conwy, P., Anderson, L., Cooper, A., 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621.PubMedCrossRefGoogle Scholar
  28. Lemel, J., Truvé, J., Söderberg, B., 2003. Variation in ranging and activity behaviour of European wild boar Sus scrofa in Sweden. Wildl. Biol. 9 (1), 29–36.CrossRefGoogle Scholar
  29. Lorenzini, R., 2005. DNA forensics and the poaching of wildlife in Italy: a case study. Forensic Sci. Int. 153, 218–221.PubMedCrossRefGoogle Scholar
  30. Lowden, S., Finlayson, H.A., MacDonald, A.A., Downing, A.C., Goodman, S.J., Leus, K., Kaspe, L., Wahyuni, E., Archibald, A.L., 2002. Application of Sus scrofa microsatellite markers to wild suiforms. Conserv. Genet. 3, 347–350.CrossRefGoogle Scholar
  31. Massei, G., Genov, P.V., Staines, B.W., 1996. Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriol. 41 (3), 307–320.CrossRefGoogle Scholar
  32. Melzer, F., Lohse, R., Nieper, H., Liebert, M., Sachse, K., 2006. A serological study on brucellosis in wild boars in Germany. Eur. J. Wildl. Res. 53, 153–157.CrossRefGoogle Scholar
  33. Nei, M., Li, W., 1972. Linkage disequilibrium in subdivided populations. Genetics 75, 213–219.Google Scholar
  34. Okumura, N., Ishiguro, N., Nakano, M., Hirai, K., Matsui, A., Sahara, M., 1996. Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar (Sus scrofa leucomystax) with reference to those of domestic pigs. Biochem. Genet. 34, 179–189.PubMedCrossRefGoogle Scholar
  35. Pritchard, J.K., Stephens, M., Donelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  36. Randi, E., 1995. Conservation genetics of the genus Sus. Ibex J.M.E. 3, 6–12.Google Scholar
  37. Rosell, C., Herrero, J., 2002. Sus scrofa Linnaeus, 1758, pp 306–309. In: Palomo, L.J., Gisbert, J. (Eds.), Atlas de los Mamíferos Terrestres de España. Direccíon General de Conservatíon de la Naturaleza—SECEM-SECEMU, Madrid.Google Scholar
  38. Rothschild, M.F., 2003. Advances in pig genomics and functional gene discovery. Comp. Funct. Genom. 4, 266–270.CrossRefGoogle Scholar
  39. Rousset, F., 1996. Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics 142, 1357–1362.PubMedPubMedCentralGoogle Scholar
  40. Sancristobal, M., Chevalet, C., Haley, C.S., Joosten, R., Rattink, A.P., Harlizius, B., Groenen, M.A.M., Amigues, Y., Boscher, M.-Y., Russell, G., Law, A., Davoli, R., Russo, V., Desautes, C., Alderson, L., Fimland, E., Bagga, M., Delgado, J.V., Vega-Pla, J.L., Martinez, A.M., Glodek, P., Meyer, J.N., Gandini, G.C., Matassino, D., Plastow, G.S., Siggens, K.W., Laval, G., Archibald, A.L., Milan, D., Hammond, K., Cardellino, R., 2006. Genetic diversity within and between European pig breeds using microsatellite markers. Anim. Genet. 37, 189–198.PubMedCrossRefGoogle Scholar
  41. Schneider, S., Roessli, D., Excoffier, L., 2000. Arlequin Version 2.000: Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  42. Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462.PubMedPubMedCentralGoogle Scholar
  43. Spencer, P.B.S., Hampton, J., Lapidge, S.J., Mitchell, J., Lee, J., Pluske, J.R., 2006. An assessment of the genetic diversity and structure within and among populations of wild pigs (Sus scrofa) from Australia and Papua New Guinea. J. Genet. 85 (1), 63–66.PubMedCrossRefGoogle Scholar
  44. Spitz, F., Janeau, G., 1990. Spatial strategies: an attempt to classify daily movements of wild boar. Acta Theriol. 35, 129–149.CrossRefGoogle Scholar
  45. Ursing, B.M., Arnason, U., 1998. The complete mitochondrial DNA sequence of the pig (Sus scrofa). J. Mol. Evol. 47, 302–306.PubMedCrossRefGoogle Scholar
  46. Vernesi, C., Crestanello, B., Pecchioli, E., Tartari, D., Caramelli, D., Hauffe, H., Bertorelle, G., 2003. The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Mol. Ecol. 12, 585–595.PubMedCrossRefGoogle Scholar
  47. Vidal, D., Naranjo, V., Mateo, R., Gortazar, C., Fuente, J., 2006. Analysis of serum biochemical parameters in relation to Mycobacterium bovis infection of European wild boars (Sus scrofa) in Spain. Eur. J. Wildl. Res. 52, 301–304.CrossRefGoogle Scholar
  48. Walsh, P.S., Metzer, D.A., Higuchi, R., 1991. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513.PubMedGoogle Scholar
  49. Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 (6), 1358–1370.Google Scholar
  50. Wright, S., 1951. The genetical structure of populations. Ann. Eugen. 15, 323–354.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wright, S., 1978. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago.Google Scholar
  52. Yue, G.H., Beeckmann, P., Geldermann, H., 2002. Mutation rates at swine microsatellite loci. Genetica 114, 113–119.PubMedCrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2008

Authors and Affiliations

  • Eduardo Ferreira
    • 1
    Email author
  • Luís Souto
    • 1
  • Amadeu M. V. M. Soares
    • 1
  • Carlos Fonseca
    • 1
  1. 1.CESAM & Departamento de BiologiaUniversidade de AveiroAveiroPortugal

Personalised recommendations