Advertisement

Mammalian Biology

, Volume 74, Issue 2, pp 114–124 | Cite as

Seasonal differences in the feeding ecology and behavior of male edible dormice (Glis glis)

  • Michaela M. Sailer
  • Joanna FietzEmail author
Original Investigation

Abstract

Mammalian hibernators undergo dramatic seasonal changes of food intake and the use of their gastrointestinal tract. During several months of hibernation fat-storing hibernators do not use their intestinal tract for nutritional intake. However, during the rest of the year they have to increase their energy intake in order to compensate high reproductive investment and store sufficient body fat to survive the following hibernation period. Edible dormice (Glis glis) are obligate fat-storing hibernators which hibernate in Germany from September until June. Males incur high energetic costs during mating and as soon as reproduction is terminated they have to accumulate high quantities of fat to survive hibernation. In order to understand how fat-storing hibernators like edible dormice cope with these energetically demanding situations, we measured body mass changes of captured male edible dormice in the field and studied their feeding ecology. Furthermore, we measured seasonal changes in food ingestion and assimilation rates by feeding experiments carried out in captivity.

Results of this study revealed that during the mating season males significantly lowered their body mass, while food ingestion and assimilation rates remained constant. The body mass reduction showed that they used their body fat reserves to pay at least part of the energetic costs of reproduction. During the pre-hibernation fattening period males increased their body mass but held their assimilation rates on a constant level. Nevertheless, they increased the amount of ingested food and subsequently the amount of energy intake. Furthermore, they changed their dietary spectrum in the field by turning to lipid-rich seeds. These behavioral adaptations enable them to restore their energy losses during reproduction and to accumulate sufficient body fat to survive hibernation.

Keywords

Glis glis Assimilation efficiency Body mass Feeding ecology Hibernation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, K.B., 1979. Food selectivity by yellow-bellied marmots. J. Mammal. 60, 628–629.CrossRefGoogle Scholar
  2. Bairlein, F., 1985. Efficiency of food utilization during fat deposition in the long-distance migratory garden warbler, Sylvia borin. Oecologia 68, 118–125.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bairlein, F., 1987. Nutritional requirements for maintenance of body weight and fat deposition in the long-distance migratory garden warbler, Sylvia borin (Boddaert). Comp. Biochem. Physiol. A Comp. Physiol. 86, 337–347.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bieber, C., 1998. Population dynamics, sexual activity, and reproduction failure in the fat dormouse (Myoxus glis). J. Zool. Lond. 244, 223–229.CrossRefGoogle Scholar
  5. Bieber, C., Ruf, T., 2004. Seasonal timing of hibernation and reproduction in the edible dormouse (Glis glis). In: Barnes, B., Carey, H. (Eds.), Life in the Cold: Evolution, Mechanisms, Adaptation, and Application. Twelfth Hibernation Symposium, Fairbanks, Alaska, USA, pp. 113–125.Google Scholar
  6. Cant, J.P., McBride, B.W., Croom, W.J.J., 1996. The regulation of intestinal metabolism and its impact on whole animal energetics. J. Anim. Sci. 74, 2541–2553.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Carey, H.V., 1990. Seasonal changes in mucosal structure and function in ground squirrel intestine. Am. J. Physiol. 259, R385–R392.PubMedPubMedCentralGoogle Scholar
  8. Carey, H.V., 1992. Effects of fasting and hibernation on ion secretion in ground squirrel intestine. Am. J. Physiol. 263, 1202–1208.Google Scholar
  9. Carey, H.V., 2005. Gastrointestinal responses to fasting in mammals: lessons from hibernators. In: Strarck, J.M., Wang, T. (Eds.), Physiological and Ecological Adaptations to Feeding in Vertebrates. Science Publishers, New Hampshire, pp. 229–254.Google Scholar
  10. Clutton-Brock, T.H., Harvey, P.H., 1978. Mammals, resources and reproductive strategies. Nature 273, 191–195.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Clutton-Brock, T.H., Albon, T.H., Gibson, S.D., Guiness, F.E., 1979. The logical stag: adaptive aspects of fighting in red deer (Cervus elaphus L.). Anim. Behav. 27, 211–225.CrossRefGoogle Scholar
  12. Clutton-Brock, T.H., Albon, S.D., Guinness, F.E., 1989. Fitness costs of gestation and lactation in wild mammals. Nature 337, 260–262.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Danell, K., Bergström, R., 2002. Mammalian herbivory in terrestrial environments. In: Herrera, C.M., Pellmyr, O. (Eds.), Plant-Animal Interactions: an Evolutionary Approach. Blackwell Science, Oxford, pp. 107–131.Google Scholar
  14. Drozdz, A., 1968. Digestability and assimilation of natural foods in small rodents. Acta Theriol. 13, 367–389.CrossRefGoogle Scholar
  15. Fietz, J., Ganzhorn, J.U., 1999. Feeding ecology of the hibernating primate Cheirogaleus medius: how does it get so fat? Oecologia 121, 157–164.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fietz, J., Schlund, W., Dausmann, K.H., Regelmann, M., Heldmaier, G., 2004. Energetic constraints on sexual activity in the male edible dormouse (Glis glis). Oecologia 138, 202–209.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fietz, J., Pflug, M., Schlund, W., Tataruch, F., 2005. Influences of the feeding ecology on body mass and possible implications for reproduction in the edible dormouse (Glis glis). J. Comp. Physiol. B 175, 45–55.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Frank, C.L., 1992. The influence of dietary fatty acids on hibernation by golden-mantled ground squirrels (Spermophilus lateralis). Physiol. Zool. 65, 906–920.CrossRefGoogle Scholar
  19. Frank, C.L., 1994. Polyunsaturate content and diet selection by ground squirrels (Spermophilus lateralis). Ecology 75, 458–463.CrossRefGoogle Scholar
  20. Frank, C.L., 2002. Short-term variations in diet fatty acid composition and torpor by ground squirrels. J. Mammal. 83, 1013–1019.CrossRefGoogle Scholar
  21. Frank, C.L., Dierenfeld, E.S., Storey, K.B., 1998. The relationship between lipid peroxidation, hibernation, and food selection in mammals. Am. Zool. 38, 341–349.CrossRefGoogle Scholar
  22. Ganzhorn, J.U., Klaus, S., Ortmann, S., Schmid, J., 2003. Adaptations to seasonality: some primate and nonprimate examples. In: Kappeler, P.M., Pereira, M.E. (Eds.), Primate Life Histories and Sociobiology. University of Chicago Press, Chicago, pp. 132–148.Google Scholar
  23. Geiser, F., Kenagy, G.J., 1993. Dietary fats and torpor patterns in hibernating ground squirrels. Can. J. Zool. 71, 1182–1185.CrossRefGoogle Scholar
  24. Gigirey, A., Rey, J.M., 1999. Faecal analysis of the edible dormouse (Glis glis) in the northwest Iberian Peninsula. Z. Säugetierkunde 64, 376–379.Google Scholar
  25. Gross, J.E., Wang, W., Wunder, B.A., 1985. Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. J. Mammal. 66, 661–667.CrossRefGoogle Scholar
  26. Harlow, H.J., Frank, C.L., 2001. The role of dietary fatty acids in the evolution of spontaneous and facultative hibernation patterns in prairie dogs. J. Comp. Physiol. B 171, 77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Heldmaier, G., Elvert, R., 2004. How to enter torpor: thermodynamic and physiological mechanisms of metabolic depression, Life in the Cold: Evolution, Mechanisms, Adaptation, and Application. 12th International Hibernation Symposium, pp. 185–198.Google Scholar
  28. Heldmaier, G., Neuweiler, G., 2004. Vergleichende Tierphysiologie. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
  29. Heldmaier, G., Ruf, T., 1992. Body temperature and metabolic rate during natural hypothermia in endotherms. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 162, 696–706.CrossRefGoogle Scholar
  30. Hume, I.D., Beiglböck, C., Ruf, T., Frey-Roos, F., Bruns, U., Arnold, W., 2002. Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota). J. Comp. Physiol. B 172, 197–207.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Jallageas, M., Assenmacher, I., 1983. Annual plasma testosterone and thyroxine cycles in relation to hibernation in the edible dormouse Glis glis. Gen. Comp. Endocrinol. 50, 452–462.PubMedCrossRefGoogle Scholar
  32. Jönsson, K.I., Tuomi, J., Jaremo, J., 1998. Pre- and postbreeding costs of parental investment. Oikos 83, 424–431.CrossRefGoogle Scholar
  33. Kager, T., 2004. Energetische Kosten der Reproduktion bei freilebenden Siebenschläfern (Glis glis L.). In Biology. University of Ulm, Ulm.Google Scholar
  34. Kuenkele, J., Kenagy, G.J., 1997. Inefficiency of lactation in primiparous rats: the costs of first reproduction. Physiol. Zool. 70, 571–577.CrossRefGoogle Scholar
  35. Lyman, C.P., Willis, J.S., Malan, A., Wang, L.C.H., 1982. Hibernation and Torpor in Mammals and Birds. Academic Press, London.Google Scholar
  36. McElligot, A.G., Naulty, F., Clarke, W.V., Hayden, T.J., 2003. The somatic cost of reproduction: what determines reproductive effort in prime-aged fallow bucks? Evol. Ecol. Res. 5, 1–12.Google Scholar
  37. Melnyk, R.B., 1978. Persistence of body weight cycles in dormice maintained with a limited food supply. Experientia 35, 603–604.CrossRefGoogle Scholar
  38. Melnyk, R.B., 1981. Insulin-induced feeding in hibernators. Behav. Neural Biol. 32, 70–78.PubMedCrossRefGoogle Scholar
  39. Millar, J.S., 1979. Adaptive features of mammalian reproduction. Evolution 31, 370–386.CrossRefGoogle Scholar
  40. Millesi, E., Huber, S., Walzl, M., Dittami, J.P., 2000. Follicular development and hibernation in European ground squirrels. In: Heldmaier, G., Klingenspor, M. (Eds.), Life in the Cold: Eleventh International Hibernation Symposium. Springer, Heidelberg, pp. 285–292.CrossRefGoogle Scholar
  41. Morris, P.A., Hoodless, A., 1992. Movements and hibernaculum site in the fat dormouse (Glis glis). J. Zool. Lond. 228, 685–687.CrossRefGoogle Scholar
  42. Mrosovsky, N., 1966. Acceleration of annual hibernating cycles to 6 weeks in captive dormice. Can. J. Zool. 44, 903–910.CrossRefGoogle Scholar
  43. Mrosovsky, N., Melnyk, R.B., Lang, K., Hallonquist, J.D., Boshes, M., Joy, J.E., 1980. Infradian cycles in dormice (Glis glis). J. Comp. Physiol. A 137, 315–339.CrossRefGoogle Scholar
  44. Pereira, M.E., 1993. Seasonal adjustment of growth rate and adult body weight in ringtailed lemurs. In: Kappeler, P.M., Ganzhorn, J.U. (Eds.), Lemurs Social Systems and their Ecological Basis. Plenum Press, New York, pp. 205–222.CrossRefGoogle Scholar
  45. Pereira, M.E., Strohecker, R.A., Cavigelli, S.A., Hughes, C.L., Pearson, D.D., 1999. Metabolic strategy and social behavior in lemuridae. In: Rakotosamimanana, B., Rasaminanana, H., Ganzhorn, J.U. (Eds.), New Directions in Lemur Studies, New York, pp. 93–118.Google Scholar
  46. Petter-Rousseaux, A., Hladik, C.M., 1980. A comparative study of food intake in five nocturnal prosimians in simulated climatic conditions. In: Charles-Dominique, P., Cooper, H.M., Hladik, A., Hladik, C.M., Pages, E., Pariente, G.F., Petter-Rousseaux, A., Petter, J.-J., Schilling, A. (Eds.), Nocturnal Malagasy Primates: Ecology, Physiology and Behaviour. Academic Press, New York, pp. 169–179.Google Scholar
  47. Piersma, T., Lindström, A., 1997. Rapid and reversible changes in organ size as a component of adaptive behaviour. Trends Ecol. Evol. 12, 134–138.CrossRefGoogle Scholar
  48. Pilastro, A., Tavecchia, G., Marin, G., 2003. Long living and reproduction skipping in the fat dormouse. Ecology 84, 1784–1792.CrossRefGoogle Scholar
  49. Ruf, T., Fietz, J., Schlund, W., Bieber, C., 2006. High survival in poor years: life history tactics adapted to mast seeding in the edible dormouse. Ecology 87, 372–381.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Sawicka-Kapustra, K., Dobrotecka, M., Drozdz, A., Tertil, R., 1975. Bioenergetic parameters of experimental groups of common voles (Microtus arvalis) Ekologia Polska 23, 347–365.Google Scholar
  51. Schauer, S., 2007. Energetische Kosten der Reproduktion bei männlichen Siebenschläfern (Glis glis L.). Diploma Thesis in Biology. University of Ulm, Ulm.Google Scholar
  52. Schlund, W., 1996. Vergleich von Siebenschläferpopulationen (Myoxus glis L.) in zwei unterschiedlichen Waldhabitaten: Einfluss von Habitatqualität auf Populationsstruktur, Morphologie und Reproduktion von Siebenschläfern. PhD Thesis, Eberhard-Karls University, TübingenGoogle Scholar
  53. Schlund, W., 2005. Siebenschläfer Glis glis (Linnaeus, 1766). In: Braun, M., Dieterlen, F. (Eds.), Die Säugetiere Baden-Württembergs, vol. 2. Ulmer GmbH & Co., Stuttgart, pp. 199–210.Google Scholar
  54. Sibly, R.M., 1981. Strategies of Digestion and Defecation. Blackwell, Oxford.Google Scholar
  55. Simmen, B., Hladik, C.M., 1988. Seasonal variation of taste threshold for sucrose in a prosimian species, Microcebus murinus. Folia Primatol. 51, 152–157.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Simmen, B., Josseaume, B., Atramentowicz, M., 1999. Frugivory and taste responses of fructose and tannic acid in a prosimian primate and didelphid marsupial. J. Chem. Ecol. 25, 331–346.CrossRefGoogle Scholar
  57. Simons, D., Bairlein, F., 1990. Neue Aspekte zur zugzeitlichen Frugivorie der Gartengrasmücke (Sylvia borin). J. Ornithol. 131, 381–401.CrossRefGoogle Scholar
  58. Speakman, J.R., Gidney, A., Bett, J., Mitchell, I.P., Johnson, M.S., 2001. IV. Effect of variation in food quality on lactating mice Mus musculus. J. Exp. Biol. 204, 1957–1965.PubMedPubMedCentralGoogle Scholar
  59. Speller, S.W., 1972. Biology of Dicrostonyx groenlandicus on Truelove Lowland, Devon Island. University of Alberta, Edmonton, pp. 257–271.Google Scholar
  60. SPSS, I., 2004. SPSS Base 8.0 for Windows User’s Guide. SPSS Inc., Chicago, IL.Google Scholar
  61. Starck, J.M., 2005. Structural flexibility of the digestive system of tetrapods-patterns and processes at the cellular and tissue level. In: Starck, J.M., Wang, T. (Eds.), Physiological and Ecological Adaptations to Feeding in Vertebrates. Science Publishers, New Hampshire, pp. 175–200.Google Scholar
  62. Stevens, C.E., Hume, I.D., 1995. Comparative Physiology of the Vertebrate Digestive System. Cambridge University Press, Cambridge.Google Scholar
  63. Totzke, U., Hubinger, A., Dittami, J., Bairlein, F., 2000. The autumnal fattening of the long-distance migratory garden warbler (Sylvia borin) is stimulated by intermittent fasting. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 170, 627–631.CrossRefGoogle Scholar
  64. Vietinghoff-Riesch, A., 1960. Der Siebenschläfer (Glis glis L.). Jena, Gustav Fischer.Google Scholar
  65. Vogt, F.D., Lynch, G.R., 1982. Influence of ambient temperature, nest availability, huddling and daily torpor on energy expenditure in the white-footed mouse, Peromyscus leucopus. Physiol. Zool. 55, 56–63.CrossRefGoogle Scholar
  66. Weiner, J., 1987. Maximum energy assimilation rates in the Djungarian hamster (Phodopus sungorus). Oecologia 72, 297–302.PubMedCrossRefPubMedCentralGoogle Scholar
  67. White, T.C.R., 2002. Outbreaks of house mice in Australia: limitation by a key resource. Aust. J. Agric. Res. 53, 505–509.CrossRefGoogle Scholar
  68. Wilz, M., Heldmaier, G., 2000. Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J. Comp. Physiol. B 170, 511–521.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Wolff, J.O., 1998. Breeding strategies, mate choice, and reproductive success in American bisons. Oikos 83, 529–544.CrossRefGoogle Scholar
  70. Woods, B.C., Armitage, K.B., 2003. Effect of food supplementation on juvenile growth and survival in Marmota flaviventris. J. Mammal. 84, 903–914.CrossRefGoogle Scholar
  71. Zoufal, K., 2005. Energiehaushalt des Siebenschläfers (Glis glis) während der Jungenaufzucht. Diploma Thesis in Naturwissenschaften und Mathematik, Vienna, Vienna, p. 49.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2008

Authors and Affiliations

  1. 1.Institute of Experimental EcologyUniversity of UlmUlmGermany

Personalised recommendations