Advertisement

Mammalian Biology

, Volume 73, Issue 5, pp 371–378 | Cite as

Habitat use of the raccon dog (Nyctereutes pvocyonoides) in north-eastern Germany

  • Frank DrygalaEmail author
  • Norman Stier
  • Hinrich Zoller
  • Kathrin Boegelsack
  • Henry M. Mix
  • Mechthild Roth
Original Investigation

Abstract

This study investigated habitat availability and its selection and preference by adult, resident raccoon dog; inhabiting the countryside in north-eastern Germany. Habitat composition within home ranges and within the whole study area was almost equal. Although percentage share of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences.

Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe.

Keywords

Nyctereutes procyonoides Telemetry Habitat use and preference Opportunist Invasion process 

Habitatnutzung des Marderhundes (Nyctereutes procyonoides) im Nordosten Deutschlands

Zusammenfassung

In dieser Studie wurden Habitatangebot, -nutzung und -präferenz adulter Marderhunde im ländlichen Bereich Nordostdeutschlands untersucht. Die Habitatzusammensetzung innerhalb der Aktionsräume und des gesamten Untersuchungsgebietes war nahezu identisch. Jedoch war innerhalb der Aktionsräume der prozentuale Anteil von Ackerland 16.35% geringer und von Weideland 12.06% höher. Alle neun Habitatkategorien (Ackerland, Wald, Siedlung, Wasser, Weideland, Maisfelder, Feldgehölze, Schilf und Hecken) wurden opportunistisch genutzt. Zwischen den Jahrszeiten zeigten Marderhunde keine signifikant unterschiedlichen Habitatpräferenzen. Das Habitatpräferenzmuster weiblicher und männlicher Marderhunde war identisch. Ein Vergleich der Peilungen von aktiven und inaktiven Tieren in den jeweiligen Habitaten wies keine bemerkbaren Unterschiede auf. Die Habitatzusammensetzung der individuellen Aktionsräume wurde zur Kategorisierung von Marderhunden genutzt. Wenn der prozentuale Waldanteil innerhalb eines Aktionsraumes 50% überstieg, wurde das Tier als „Waldtyp” eingestuft. Wenn der prozentuale Waldanteil eines Aktionsraumes unter 5% lag, resultierte dies in einem durchschnittlichen Flächenanteil von 81.82%±16.92 SD Weideland. Folglich wurde das Tier als “Agrartyp” eingestuft. Weder Habitatpräferenz noch Habitatauswahl differierten zwischen beiden “Typen”. Habitatnutzung und -präferenz wird bezüglich des weiteren Ausbreitungspotentials nach Westeuropa diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebischer, N.J., Marcström, V., Kenward, R.E., Karlbom, M., 1993a. Survival and habitat utilisation: a case for compositional analysis. In: Lebreton, J.D., North, P.M. (Eds.), Marked Individuals in the Study of Birds Population. Birkhäuser Verlag, Basel, pp. 343–353.Google Scholar
  2. Aebischer, N.J., Robertson, P.A., Kenward, R.E., 1993b. Compositional analysis of habitat use from animal radio-tracking data. Ecology 74, 1313–1325.Google Scholar
  3. Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Chapman & Hall, London.CrossRefGoogle Scholar
  4. Andelt, W.F., 1985. Behaviour ecology of coyotes in south Texas. Wildl. Monogr. 94, 1–45.Google Scholar
  5. Boulanger, J.G., White, G.C., 1990. A comparison of home-range estimators using Monte Carlo simulation. J. Wildl. Manage. 54, 310–315.CrossRefGoogle Scholar
  6. Cresswell, W.J., Smith, G.C., 1992. The effects of temporally autocorrelated data on methods of home range analysis. In: Priede, I.G., Swift, S.M. (Eds.), Wildlife Telemetry — Remote Monitoring an Tracking of Animals. Chichester Press, Great Britain, pp. 272–284.Google Scholar
  7. DeSolla, S.R., Bonduranski, R., Brooks, R.J., 1999. Eliminating autocorrelation reduces biological relevance of home range estimates. J. Anim. Ecol. 68, 221–234.CrossRefGoogle Scholar
  8. Drygala, F., Mix, H.M., Stier, N., Roth, M., 2000. Preliminary findings from ecological studies of the raccoon dog (Nyctereutes procyonoides) in eastern Germany. Z. Ökol. Naturschutz 9, 147–152.Google Scholar
  9. Drygala, F., Stier, N., Roth, M., 2002. Erste Ergebnisse zur Nahrungsökologie, Home-Range und Habitatnutzung des Marderhundes (Nyctereutes procyonoides) — eines invasiven Caniden in Ostdeutschland. Artenschutzreport 12, 48–54.Google Scholar
  10. Harris, S., Cresswell, W.J., Forde, P.G., Trewhella, W.J., Woollard, T., Wray, S., 1990. Home-range analysis using radio-tracking data: a review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123.CrossRefGoogle Scholar
  11. Helle, E., Kauhala, K., 1995. Reproduction in the raccoon dog in Finland. J. Mammal. 76, 1036–1046.CrossRefGoogle Scholar
  12. Jacobs, J., 1974. Quantitative measurements of food selection. A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417.CrossRefGoogle Scholar
  13. Jacob, J., 2000. Die Bestimmung der Populationsdynamik der Feldmaus (Microtus arvalis) auf Agrarflächen mit dem robusten Design. Beitr. Ökol. 4, 33–41.Google Scholar
  14. Kauhala, K., 1992. Ecological characteristics of the raccoon dog in Finland. Ph.D Thesis, University of Helsinki, Finland.Google Scholar
  15. Kauhala, K., Kaunisto, M., Helle, E., 1993a. Diet of the raccoon dog, Nyctereutes procyonoides, in Finland. Z. Säugetierkd. 58, 129–136.Google Scholar
  16. Kauhala, K., Helle, E., Taskinen, K., 1993b. Home range of the raccoon dog (Nyctereutes procyonoides) in southern Finland. J. Zool. London 231, 95–106.CrossRefGoogle Scholar
  17. Kauhala, K., 1996. Habitat use of raccoon dogs, Nyctereutes procyonoides, in southern Finland. Z. Säugetierkd. 6, 269–275.Google Scholar
  18. Kauhala, K., Saeki, M., 2004. Raccoon dog (Nyctereutes procyonoides). In: Sillero-Zubiri, C., Hoffman, M., McDonald, D.W. (Eds.), Canids: Foxes, Wolves, Jackals and Dogs, Status Survey and Conservation Action Plan. IUCN/SSC Canid Specialist Group, pp. 136–142.Google Scholar
  19. Kauhala, K., Helle, E., Pietila, H., 1998. Time allocation of male and female raccoon dogs to pup rearing at the den. Acta Theriol. 43, 301–310.CrossRefGoogle Scholar
  20. Kauhala, K., Holmala, K., Lammers, W., Schregel, J., 2006. Home ranges and densities of medium-sized carnivores in south-east Finland, with special references to rabies spread. Acta Theriol. 51, 1–13.CrossRefGoogle Scholar
  21. Kenward, R.E., 2001. A Manual for Wildlife Radio Tagging. Academic Press, Dorset.Google Scholar
  22. Kenward, R.E., South, A.B., Walls, S.S., 2003. Ranges 6 v1.2: For the Analysis of Tracking and Location Data. Anatrack Ltd., Wareham.Google Scholar
  23. Laundré, J.W., Keller, B.L., 1984. Home-range Size of Coyotes: A Critical Review. J. Wildl. Manage. 48, 127–139.CrossRefGoogle Scholar
  24. Lavrov, N.P., 1971. Itogi introduktsii enotovidnoj sobaki (Npg) vothel’nye oblasti SSSR [The results of introduction of the raccoon dog (Nyctereutes procyonoides) in different provinces in the USSR]. Tr. Kafedry Biol. MGZPI, Moscow 29, 101–160.Google Scholar
  25. McCoy, E.D., Bell, S.S., 1991. Habitat structure: the evolution and diversification of a complex topic. In: Bell, S.S., McCoy, E.D., Mushinsky, H.R. (Eds.), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London, pp. 3–27.CrossRefGoogle Scholar
  26. Nams, V.O., 1989. Effects of sample size and bias when testing for habitat selection. Can. J. Zool. 67, 1631–1636.CrossRefGoogle Scholar
  27. Niethammer, J., Krapp, F., 1978. Handbuch der Säugetiere Europas. Bd. 2/I, Nagetiere-Rodentia I: (Sciuridae, Castoridae, Gliridae, Muridae). III. Akademische Verlagsgesellschaft, Wiesbaden.Google Scholar
  28. Niethammer, J., Krapp, F., 1982. Handbuch der Säugetiere Europas. Bd. 2/I, Nagetiere-Rodentia II: (Cricetidae, Arvicolidae, Zapodidae, Spalacidae, Hystricidae, Capromyidae). XVII. Akademische Verlagsgesellschaft, Wiesbaden.Google Scholar
  29. Novak, R.M., 1999. Raccoon dog. In: Walker, E.P. (Ed.), Walkers Mammals of the World, vol. 1, sixth ed. The John Hopkins Press, Baltimore and London, pp. 652–653.Google Scholar
  30. Robertson, P.A., Aebischer, N.J., Kenward, R.E., Hanski, I.K., Williams, N.P., 1998. Simultation and jack-knifing assessment of home-range indices based on underlying trajectories. J. Appl. Ecol. 35, 928–940.CrossRefGoogle Scholar
  31. Rooney, S.M., Wolfe, A., Hayden, T.J., 1998. Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects. Mammal Rev. 28, 89–98.CrossRefGoogle Scholar
  32. Saeki, M., 2001. Ecology and conservation of the raccoon dog (Nyctereutes procyonoides) in Japan. Dissertation, Oxford University Press.Google Scholar
  33. Schooley, R.L., 1994. Annual variation in habitat selections: patterns concealed by pooled data. J. Wildl. Manage. 58, 367–374.CrossRefGoogle Scholar
  34. Seaman, D.E., Powell, A.E., 1996. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77, 2075–2085.CrossRefGoogle Scholar
  35. Swihart, R.K., Slade, N.A., 1985. Testing for independence of observations in animal movements. Ecology 66, 1176–1184.CrossRefGoogle Scholar
  36. White, G.C., Garrott, R.A., 1990. Analysis of Wildlife Radio-tracking Data. Academic Press, San Diego.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2007

Authors and Affiliations

  • Frank Drygala
    • 1
    Email author
  • Norman Stier
    • 1
  • Hinrich Zoller
    • 2
  • Kathrin Boegelsack
    • 1
  • Henry M. Mix
    • 3
  • Mechthild Roth
    • 1
  1. 1.Chair of Forest ZoologyDresden University of TechnologyTharandtGermany
  2. 2.Institute of BiodiversityUniversity RostockRostockGermany
  3. 3.Nature Conservation InternationalMöllenseeGermany

Personalised recommendations