Advertisement

Mammalian Biology

, Volume 73, Issue 1, pp 40–47 | Cite as

Relative spraint density and genetic structure of otter (Lutra lutra) along the Drava River in Hungary

  • J. LanszkiEmail author
  • A. Hidas
  • K. Szentes
  • T. Révay
  • I. Lehoczky
  • S. Weiss
Original Investigation

Abstract

In this study, we used genetic-based approaches to estimate population size and structure of Eurasian otter along the Drava River in Hungary, and compared these results to traditional survey-based methods. The relative spraint density of otter was estimated based on the number of fresh (Df) and total number (Dt) of spraints collected on standard routes over a 2-year period. Nine microsatellite loci were screened, generating 17 individual otter genotypes composed of 45 different alleles. The expected heterozygosity ranged from 0.53 to 0.89 and observed heterozygosity from 0.25 to 0.92. The mean density (Dg) estimated over six different sites was 0.17 individuals per km of shoreline. A close correlation was found between the number of genotypes and spraint counts along a standard route (fresh spraints: rP = 0.85, P<0.01; total spraints rP = 0.76, P<0.05). All genotypes found within the 50km-long study area were closely related (Dm ranged between 0.08 and 0.21).

Keywords

Lutra lutra Microsatellite loci Genotype Heterozygosity Density 

Relative Losungsdichte und genetische Struktur von Fischottern (Lutra lutra) entlang der Drau in Ungarn

Zusammenfassung

In dieser Untersuchung verwendeten wir genetische Methoden, um die Populationsgröße und -struktur des eurasischen Fischotters am Fluß Drau in Ungarn abzuschätzen. Die Ergebnisse wurden mit jenen aus traditionellen Untersuchungen verglichen. Die relative Losungsdichte wurde berechnet auf Grund der Anzahl von frischem (Df) und der Anzahl von gesamter Losung (Dt), die entlang von Standardrouten in einem zweijährigen Zeitraum gesammelt wurden. Neun Mikrosatelliten wurden verwendet, die insgesamt 45 Allele aufwiesen. Dadurch konnten 17 individuelle Genotypen unterschieden werden. Die erwartete Heterozygotie reichte von 0.53 bis 0.89, und die beobachtete Heterozygotie reichte von 0.25 bis 0.92. Die mittlere Dichte (Dg) über sechs Stellen war 0.17 Individuen/km. Es gab eine signifikante Korrelation zwischen der Anzahl von Genotypen und der Anzahl gefundener Losung entlang von Standardrouten (frische Losung: rP = 0.85, P<0.01; gesamte Losung rP = 0.76, P<0.05). Alle Genotypen, die innerhalb des 50 km langen Untersuchungsgebietes gefunden wurden, waren nah mit einander verwandt (Dm reichte von 0.08 bis 0.21).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrendal, J., Walker, C.W., Sundqvist, A.K., Hellborg, L., Vila, C., 2004. Genetic evaluation of an otter translocation program. Conserv. Genet. 5, 79–88.CrossRefGoogle Scholar
  2. Conroy, J.W.H., Chanin, P.R.F., 2002. The status of the Eurasian otter (Lutra lutra). IUCN OSG Bull. 19A, 24–48.Google Scholar
  3. Conroy, J.W.H., French, D.D., 1987. The use of spraints to monitor populations of otters (Lutra lutra L). Symp. Zool. Soc. London 58, 247–262.Google Scholar
  4. Coxon, K., Chanin, P., Dallas, J., Sykes, T., 1999. The use of DNA fingerprinting to study the population dinamics of otters (Lutra lutra) in Southern Britain: a feasibility study. Research and Development Technical Report W202.Google Scholar
  5. Dallas, J.F., Piertney, S.B., 1998. Microsatellite primers for the Eurasian otter. Mol. Ecol. 7, 1248–1251.PubMedGoogle Scholar
  6. Dallas, J.F., Bacon, P.J., Carss, D.N., Conroy, J.W.H., Green, R., Jefferies, D.J., Kruuk, H., Marshall, F., Piertney, S.B., Racey, P.A., 1999. Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol. J. Linn. Soc. 68, 73–86.CrossRefGoogle Scholar
  7. Dallas, J.F., Carss, D.N., Marshall, F., Koepfli, K.P., Kruuk, H., Bacon, P.J., Piertney, S.B., 2000. Sex identification of the Eurasian otter Lutra lutra by PCR typing of spraints. Conserv. Genet. 1, 181–183.CrossRefGoogle Scholar
  8. Dallas, J.F., Marshall, F., Piertney, S.B., Bacon, P.J., Racey, P.A., 2002. Spatially restricted gene flow and reduced microsatellite polymorphism in the Eurasian otter Lutra lutra in Britain. Conserv. Genet. 3, 15–29.CrossRefGoogle Scholar
  9. Dallas, J.F., Coxon, K.E., Sykes, T., Chanin, P.R.F., Marshall, F., Carss, D.N., Bacon, P.J., Piertney, S.B., Racey, P.A., 2003. Similar estimates of population genetic composition and sex ratio derived from carcasses and faeces of European otter Lutra lutra. Mol. Ecol. 12, 275–282.CrossRefGoogle Scholar
  10. Dulfer, R., Foerster, K, Roche, K, 1998. Habitat use, home range and behaviour. In: Dulfer, R., Roche, K. (Eds.), First Phase Report of the Trebon Otter Project. Scientific Background and Recommendations for Conservation and Management Planning, vol. 93. Council of Europe Publishing, Strasbourg, pp. 31–46.Google Scholar
  11. Erlinge, S., 1968. Territoriality of the otter Lutra lutra L. Oikos 19, 81–98.CrossRefGoogle Scholar
  12. Goudet, J., 1995. FSTAT (ver. 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486.CrossRefGoogle Scholar
  13. Hájková, P., Pertoldi, C., Zemanová, B., Roche, K., Hájek, B., Bryja, J., Zima, J., 2007. Genetic structure and evidence for recent population decline in Eurasian otter populations in the Czech and Slovak Republics: implications for conservation. J. Zool. (London) 272, 1–9.CrossRefGoogle Scholar
  14. Hung, C.M., Li, S.H., Lee, L.L., 2004. Faecal DNA typing to determine the abundance and spatial organization of otters (Lutra lutra) along two streams in Kinmen. Anim. Conserv. 7, 301–311.CrossRefGoogle Scholar
  15. Jefferies, D.J., 1986. The value of otter Lutra lutra surveying using spraints: an analysis of its successes and problems in Britain. Otters, J. Otter Trust 1, 25–32.Google Scholar
  16. Jenkins, D., 1980. Ecology of otters in northern Scotland: I. otter (Lutra lutra) breeding and dispersion in mid-Deeside, Aberdeenshire, in 1974-79. J. Anim. Ecol. 49, 713–735.CrossRefGoogle Scholar
  17. Juhász, M., Dénes, A., 2005. Biomonitoring of alluvial willow forests. Nat. Somogy. 7, 11–18.Google Scholar
  18. Kalz, B., Jewgenow, K., Fickel, J., 2006. Structure of an otter (Lutra lutra) population in Germany - results of DNA and hormone analyses from faecal samples. Mamm. Biol. 71, 321–335.CrossRefGoogle Scholar
  19. Kohn, M.H., Wayne, R.K., 1997. Facts from feces revisited. Tree 12, 223–227.PubMedGoogle Scholar
  20. Kruuk, H., Conroy, J.W.H., 1987. Surveying otter Lutra lutra populations: a discussion of problems with spraints. Biol. Conserv. 41, 179–183.CrossRefGoogle Scholar
  21. Kruuk, H., Conroy, J.W.H., Glimmerween, U., Ouwerkerk, E.J., 1986. The use of spraints to survey populations of otters Lutra lutra. Biol. Conserv. 35, 187–194.CrossRefGoogle Scholar
  22. Kruuk, H., Moorhouse, A., Conroy, J.W.H., Durbin, L., Frear, S., 1989. An estimate of numbers and habitat preference of otters Lutra lutra in Shetland, UK. Biol. Conserv. 49, 241–254.CrossRefGoogle Scholar
  23. Kruuk, H., Conroy, J.W.H., Moorhouse, A., 1991. Recruitment to a population of otters (Lutra lutra) in Shetland, in relation to fish abundance. J. Appl. Ecol. 28, 95–101.CrossRefGoogle Scholar
  24. Kruuk, H., Carss, D.N., Conroy, J.W.H., Durbin, L., 1993. Otter (Lutra lutra) numbers and fish productivity in rivers in N.E. Scotland. Symp. Zool. Soc. London 65, 171–191.Google Scholar
  25. Langella, O., 1999. POPULATIONS 1.2.28 software (http://www.prs-gif.fr.Google Scholar
  26. Lanszki, J., 2005. Otter monitoring between 2000 and 2004 in the Drava region (Hungary). Nat. Somogy. 7, 169–178.Google Scholar
  27. Lanszki, J., Sallai, Z., 2006. Comparison of the feeding habits of Eurasian otters on a fast flowing river and its backwater habitats. Mamm. Biol. 71, 336–346.CrossRefGoogle Scholar
  28. Mason, C.F., Macdonald, S.M., 1986. Otters: Ecology and Conservation. Cambridge University Press, Camridge.Google Scholar
  29. Mason, C.F., Macdonald, S.M., 1987. The use of spraints for surveying otter Lutra lutra populations: an evaluation. Biol. Conserv. 41, 167–177.CrossRefGoogle Scholar
  30. Page, R.D.M., 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358.PubMedGoogle Scholar
  31. Pertoldi, C., Hansen, M.H., Loeschcke, V., Madsen, A.B., Jacobsen, L., Baagoe, H, 2001. Genetic consequences of population decline in the European otter (Lutra lutra): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. Proc. R. Soc. London, Ser. B. 268, 1775–1781.CrossRefGoogle Scholar
  32. Prigioni, C., Remonti, L., Balestrieri, A., Sgrosso, S., Priore, G, Misin, C., Viapiana, M., Spada, S., Anania, R., 2005. Distribution and sprainting activity of the otter (Lutra lutra) in the Pollino National Park (southern Italy). Ethol. Ecol. Evol. 17, 171–180.CrossRefGoogle Scholar
  33. Ramekers, J., Hummel, S., Hermann, B., 1997. How many cycles does a PCR need? Determination of cycle numbers depending of the number of targets and the reaction efficiency factor. Naturwissenschaften 84, 259–262.CrossRefGoogle Scholar
  34. Randi, E., Davoli, F., Pierpaoli, M., Pertoldi, C., Madsen, A.B., Loeschcke, V., 2003. Genetic structure in otter (Lutra lutra) populations in Europe: implications for conservation. Anim. Conserv. 6, 93–100.CrossRefGoogle Scholar
  35. Raymond, M., Rousset, F., 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249.CrossRefGoogle Scholar
  36. Reuther, C., Dolch, D., Green, R., Jahrl, J., Jefferies, D., Krekemeyer, A., Kucerova, M., Madsen, A.B., Romanowski, J., Roche, K., Ruiz- Olmo, J., Teubner, J., Trindade, A., 2000. Surveying and monitoring distribution and population trends of the Eurasian otter (Lutra lutra). Habitat 12, Hankensbüttel, Germany.Google Scholar
  37. Ruiz-Olmo, J., Gosálbez, J., 1997. Observations on the sprainting behaviour of the otter Lutra lutra in the NE Spain. Acta Theriol. 42, 259–270.CrossRefGoogle Scholar
  38. Ruiz-Olmo, J., Lopez-Martin, J.M., Palazon, S., 2001a. The influence of fish abundance on the otter (Lutra lutra) populations in Iberian Mediterranean habitats. J. Zool. (London) 254, 325–336.CrossRefGoogle Scholar
  39. Ruiz-Olmo, J., Saavedra, D., Jiménez, J., 2001b. Testing the surveys and visual and track censuses of European otter (Lutra lutra). J. Zool. (London) 253, 359–369.CrossRefGoogle Scholar
  40. Ruiz-Olmo, J., Olmo-Vidal, J.M., Manas, S., Batet, A., 2002. The influence of resource seasonality on the breeding patterns of the Eurasian otter (Lutra lutra) in Mediterranean habitats. Can. J. Zool. 80, 2178–2189.CrossRefGoogle Scholar
  41. Sidorovich, V.E., Jedrzejewska, B., Jedrzejewski, W., 1996. Winter distribution and abundance of predatory mustelids and beavers in the river valleys of Bialowieza Primeval Forest. Acta Theriol. 41, 155–170.CrossRefGoogle Scholar
  42. Sidorovich, V.E., Pikulik, M.M., 2002. Factors allowing high density of otters in Eastern Europe. IUCN OSG Bull. 19A, 326–333.Google Scholar
  43. SPSS 10 for Windows, 1999. SPSS Inc., Chicago.Google Scholar
  44. Taberlet, P., Luikart, G., 1999. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68, 41–55.CrossRefGoogle Scholar
  45. Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N, Waits, L.P., Bouvet, J., 1996. Reliable genotyping of samples with a very low DNA quantities using PCR. Nucleid Acids Res. 24, 3189–3194.CrossRefGoogle Scholar
  46. Taberlet, P., Waits, L.P., Luikart, G., 1999. Noninvasive genetic sampling: look before you leap. Trends Ecol. Evol. 14, 323–327.PubMedCrossRefGoogle Scholar
  47. Takezaki, N., Nei, M., 1996. Genetic distances and reconstruction of Phylogenetic trees from Microsatellite DNA. Genetics 144, 189–399.Google Scholar
  48. Valière, N., 2002. Gimlet: a computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379.Google Scholar
  49. White, P.C.L., McClean, C.J., Woodroffe, GL., 2003. Factors affecting the success of an otter (Lutra lutra) reinforcement programme, as identified by post-translocation monitoring. Biol. Conserv. 112, 363–371.CrossRefGoogle Scholar
  50. Wilson, G. J., Delahay, R.J., 2001. A review of methods to estimate the abundance of terrestrial carnivores using field signs and observations. Wildl. Res. 28, 151–164.CrossRefGoogle Scholar
  51. Závodszky, S., 2005. Hydroelectricity or national park? Nat. Somogy. 7, 5–9.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2007

Authors and Affiliations

  • J. Lanszki
    • 1
    Email author
  • A. Hidas
    • 2
  • K. Szentes
    • 2
  • T. Révay
    • 2
  • I. Lehoczky
    • 3
  • S. Weiss
    • 4
  1. 1.Ecological Research GroupUniversity of KaposvárKaposvárHungary
  2. 2.Genetic LaboratoryResearch Institute for Animal Breeding and NutritionGödöllöHungary
  3. 3.Genetic Laboratory, Research Institute for FisheriesAquaculture and IrrigationSzarvasHungary
  4. 4.Institute of ZoologyKarl-Franzens University GrazGrazAustria

Personalised recommendations