Advertisement

Mammalian Biology

, Volume 73, Issue 4, pp 276–286 | Cite as

Comparisons of digestive function between the European hare (Lepus europaeus) and the European rabbit (Oryctolagus cuniculus): Mastication, gut passage, and digestibility

  • Philip StottEmail author
Original Investigation

Abstract

The European hare Lepus europaeus and the European rabbit Oryctolagus cuniculus are sympatric in many areas of the world. They are medium-sized herbage-feeding lagomorphs and trophic competitors. Both species feed on twigs under extreme and perhaps limiting conditions. To ascertain whether fine niche separation mechanisms occur, several comparative tests of digestive function were undertaken on samples of animals drawn from sympatric populations. The weights of the organs constituting the abdominal alimentary canal, the rates of passage and the extent of trituration of dietary markers intended to mimic twigs, and the digestibility of fibre, protein, and fat were compared. Both the stomach and the caecum of the hare were significantly smaller as a proportion of body weight, and this would result in a higher power-weight ratio. Both species rapidly passed the digestive marker, but passage was significantly faster in the hare. The rabbit chewed twig-like material with a scissor cutting and crushing action, whereas the action of the hare included a stripping action that would more efficiently access soluble carbohydrates stored in vascular rays. Both species were poor digesters of fibre, but digestibility of hemicelluloses was significantly greater in the rabbit. The faeces of both species of lagomorphs contain nutrients that can be attractive to more efficient fermenters of plant fibre, and consumption of those faeces may confound lagomorph population surveys that rely on dung counts.

Keywords

Cellulose Digestion Dung counts Hemicellulose Twigs 

Vergleich der Verdauungsfunktion von Feldhase (Lepus europaeus) und Wildkaninchen (Oryctolagus cuniculus): Mastikation, Darmpassage und Verdaulichkeit

Zusammenfassung

Der europäische Hase Lepus europaeus und das europäische Kaninchen Otyctolagus cuniculus sind in vielen Gebieten der Welt sympatrisch. Die mittelgrossen Lagomorpha sind Nahrungskonkurrenten, die sich hauptsächlich von Gräsern und Kräutern ernähren, aber unter extremen und vermutlich begrenzenden Bedingungen auch Zweige verzehren. Um zu ermitteln, ob feine Nischenseparationsmechanismen existieren, wurden an Probenmaterial von Tieren aus sympatrischen Populationen vergleichende Untersuchungen zur Verdauungsfunktion durchgeführt. Die Gewichte der Organe, die den abdominalen Verdauungstrakt bilden, die Passageraten, und das Ausmaß der Zerreibung von dietätischen Markern als Zweigersatz sowie die Verdaulichkeit von Rohfaser, Protein und Fett wurden verglichen. Sowohl der Magen als auch das Caecum des Hasen waren signifikant kleiner im Verhältnis zum Körpergewicht; dies fuhrt zu einem größeren Kraft-Gewichtsverhältnis. Der Verdauungsmarker passierte den Verdauungstrakt beider Spezies schnell, aber die Passage war signifikant schneller beim Hasen. Das Kaninchen kaute zweigähnliches Material in einem scherenartigen Schneid-und Quetschakt. Beim Hasen ist in diesem Prozess noch eine abschälende Aktion eingeschlossen, die einen effizienteren Zugang zu wasserlöslichen, in den Speicherzellen eingelagerten Kohlenhydraten ermöglicht. Bei beiden Spezies war die Verdaulichkeit von Rohfaser gering. Das Kaninchen verdaute Hemizellulosen jedoch signifikant besser. Die Fäzes beider Lagomorpha enthalten Nährstoffe, die für effizientere Verwerter von Pflanzenfasern attraktiv sein können. Der Verzehr der Fäzes könnte daher zu Fehlern bei der Erfassung der Populationen der beiden Lagomorpha-Spezies führen, wenn die Berechnungen auf der Anzahl der Losungen beruhen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbaroux, C., Breda, N., Dufrene, E., 2003. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol. 157, 605–615.CrossRefGoogle Scholar
  2. Björnhag, G., 1972. Separation and delay of contents in the rabbit colon. Swed. J. Agric. Res. 2, 125–136.Google Scholar
  3. Björnhag, G., 1981. Separation and retrograde transport in the large intestine of herbivores. Livest. Prod. Sci. 8, 351–360.CrossRefGoogle Scholar
  4. Bourlière, F., 1955. The Natural History of Mammals. George Harrop and Company, London.Google Scholar
  5. Carabaño, R., Piquer, J., 1998. The digestive system of the rabbit. In: de Blas, C., Wiseman, J. (Eds.), The Nutrition of the Rabbit. CABI Publishing, Oxon, pp. 1–16.Google Scholar
  6. Cheeke, P.R., 1999. Applied Animal Nutrition: Feeds and Feeding. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  7. Chiou, P.W.S., Yu, B., Lin, C., 1998. The effect of different fibre components on growth rate, nutrient digestibility, rate of digesta passage and hindgut fermentation in domesticated rabbits. Lab. Anim. 32, 276–283.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Conklin-Brittain, N.L., Dierenfeld, E.S., 1996. Small ruminants: digestive capacity differences among four species weighing less than 20 kg. Zoo. Biol. 15, 481–490.CrossRefGoogle Scholar
  9. Cooke, B.D., 1982. A shortage of water in natural pastures as a factor limiting a population of rabbits, Oryctolagus cuniculus (L.), in arid, north-eastern South Australia. Aust. Wildl. Res. 9, 465–476.CrossRefGoogle Scholar
  10. Demment, M.W., Van Soest, P.J., 1985. Nutritional explanation for body-size patterns of ruminant and non-ruminant herbivores. Am. Nat. 125, 641–672.CrossRefGoogle Scholar
  11. Dierenfeld, E.S., Wildman, R.E., Romo, S., 2000. Feed intake, diet utilization, and composition of browses consumed by the Sumatran Rhino (Dicerornis sumatrensis) in a North American zoo. Zoo. Biol. 19, 169–180.CrossRefGoogle Scholar
  12. Ehle, F.R., 1984. Influence of feed particle density on particulate passage from rumen of Holstein cow. J. Dairy Sci. 67.Google Scholar
  13. Fell, B.F., Smith, K.A., Campbell, R.M., 1963. Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. J. Pathol. Bacteriol. 85, 179–188.PubMedCrossRefGoogle Scholar
  14. Flux, J.E., 1967. Hare numbers and diet in an alpine basin in New Zealand. Proc. N.Z. J. Sci. 14, 27–33.Google Scholar
  15. Forys, E.A., Humphrey, S.R., 1997. Comparison of 2 methods to estimate density of an endangered lagomorph. J. Wildl. Manage. 61, 86–92.CrossRefGoogle Scholar
  16. Fraga, M.J., Perez de Ayala, P., Carabaño, R., de Blas, J.C., 1991. Effect of type of fiber on the rate of passage and on the contribution of soft feces to nutrient intake of finishing rabbits. J. Anim. Sci. 69, 1566–1574.PubMedCrossRefGoogle Scholar
  17. Garcia, J., Perez-Alba, L., Alvarez, C., Rocha, R., Ramos, M., de Blas, C., 1995. Prediction of the nutritive value of lucerne hay in diets for growing rabbits. Anim. Feed Sci. Technol. 54, 33–44.CrossRefGoogle Scholar
  18. Garland, T.J., 1983a. Scaling the ecological cost of transport to body mass in terrestrial mammals. Am. Nat. 121, 571–587.CrossRefGoogle Scholar
  19. Garland, T.J., 1983b. The relation between maximal running speed and body mass in terrestrial mammals. J. Zool. (London) 199, 157–179.CrossRefGoogle Scholar
  20. Gidenne, T., Perez, J.M., 1994. Apports de lignines et alimentation du lapin en croissance. I. Consequences sur la digestion et le transit. Ann. Zootech. 43, 313–322.CrossRefGoogle Scholar
  21. Gidenne, T., Perez, J.M., 1996. Apports de cellulose dans l’alimentation du lapin en croissance. I. Conséquences sur la digestion et le transit. Ann. Zootech. 45, 289–298.CrossRefGoogle Scholar
  22. Gidenne, T., Carabaño, R., García, J., de Blas, C., 1998. Fibre digestion. In: de Blas, C., Wiseman, J. (Eds.), The Nutrition of the Rabbit. CABI Publishing, Oxon, pp. 69–88.Google Scholar
  23. Goering, H.K., Van Soest, P.J., 1970. Forage Fibre Analyses (Apparatus, Reagents, Procedures, & Some Applications). US Government Printing Office, Washington.Google Scholar
  24. Graham, N.M., Williams, A.J., 1962. The effects of pregnancy on the passage of food through the digestive tract of sheep. Aust. J. Agric. Res. 13, 894–900.CrossRefGoogle Scholar
  25. Hacklander, K., Tataruch, F., Ruf, T., 2002. The effect of dietary fat content on lactation energetics in the European hare (Lepus europaeus). Physiol. Biochem. Zool. 75, 19–28.PubMedCrossRefGoogle Scholar
  26. Harris, L.E., 1970. Nutrition Research Techniques for Domestic and Wild Animals. Utah State University, Logan.Google Scholar
  27. Hewson, R., Taylor, M., 1975. Embryo counts and length of the breeding season in European hares in Scotland from 1960–1972. Acta Theriol. 20, 247–254.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hirakawa, H., 2001. Coprophagy in leporids and other mammalian herbivores. Mammal Rev. 31, 61–80.CrossRefGoogle Scholar
  29. Hirakawa, H., Okada, A., 1995. Hard faeces reingestion and the passage and recycling of large food particles in the Japanese hare (Lepus brachyurus). Mammalia 59, 237–247.CrossRefGoogle Scholar
  30. Hodges, K.E., Sinclair, A.R.E., 2003. Does predation risk cause snowshoe hares to modify their diets? Can. J. Zool. 81, 1973–1985.CrossRefGoogle Scholar
  31. Hoffman, P.C., Sievert, S.J., Shaver, R.D., Welch, D.A., Combs, D.K., 1993. In situ dry matter, protein, and fiber degradation of perennial forages. J. Dairy Sci. 76, 2632–2643.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Homolka, M., 1987. A comparison of the trophic niches of Lepus europaeus and Oryctolagus cuniculus. Folia Zool. 36, 307–317.Google Scholar
  33. Hooper, A.P., Welch, J.G., 1985. Effects of particle size and forage composition on functional specific gravity. J. Dairy Sci. 68, 1181.CrossRefGoogle Scholar
  34. Hörnicke, H., Björnhag, G., 1980. Coprophagy and related strategies for digesta utilization. In: Ruckebusch, Y., Thivend, P. (Eds.), Digestive Physiology and Metabolism in Ruminants. AVI Publishing Company, Westport, pp. 707–730.CrossRefGoogle Scholar
  35. Hulbert, I.A.R., Andersen, R., 2001. Food competition between a large ruminant and a small hindgut fermentor: the case of the roe deer and mountain hare. Oecologia 128, 499–508.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hulbert, I.A., Iason, G.R., Racey, P.A., 1996. Habitat utilization in a stratified upland landscape by two lagomorphs with different feeding strategies. J. Appl. Ecol. 33, 315–324.CrossRefGoogle Scholar
  37. Jung, H.G., Allen, M.S., 1995. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 73, 2774–2790.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kao, Y.Y., Harding, S.A., Tsai, C.J., 2002. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol. 130, 796–807.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Keys, J.E., Van Soest, P.J., Young, E.P., 1970. Effect of increasing dietary cell wall content on the digestibility of hemicellulose and cellulose in swine and rats. J. Anim. Sci. 31, 1172–1177.CrossRefGoogle Scholar
  40. Kim, Y.K., 1994. A comparison of nutrient digestibility by wild Korean mountain hares (Lepus sinensis coreanus) and rabbits (Oryctolagus cuniculus). Korean J. Anim. Sci. 36, 397–402.Google Scholar
  41. King, J.O.L., 1978. Feeding dried rabbit faeces to growing rabbits. Br. Vet. J. 134, 393–397.PubMedCrossRefGoogle Scholar
  42. Klein, D.R., Bay, C., 1994. Resource partitioning by mammalian herbivores in the high Arctic. Oecologia 97, 439–450.PubMedCrossRefGoogle Scholar
  43. Kronfeld, N., Shkolnik, A., 1996. Adaptation to life in the desert in the brown hare (Lepus capensis). J. Mammal. 77, 171–178.CrossRefGoogle Scholar
  44. Kuijper, D.P.J., van Wieren, S.E., Bakker, J.P., 2004. Digestive strategies in two sympatrically occurring lagomorphs. J. Zool. (London) 264, 171–178.CrossRefGoogle Scholar
  45. Langbein, J., Hutchings, M.R., Harris, S., Stoate, C., Tapper, S.C., Wray, S., 1999. Techniques for assessing the abundance of brown hares. Mammal Rev. 29, 93–116.CrossRefGoogle Scholar
  46. Lebas, F., 1979. Efficacité de la digestion chez la lapine adulte. Effets du niveau d’alimentation et du stade de gestation. Ann. Biol. Anim. Biochem. Biophys. 19, 969–973.CrossRefGoogle Scholar
  47. Livingston, T.R., Gipson, P.S., Ballard, W.B., Sanchez, D.M., Krausman, P.R., 2005. Scat removal: a source of bias in feces-related studies. Wildl. Soc. Bull. 33, 172–178.CrossRefGoogle Scholar
  48. McKelvey, K.S., McDaniel, G.W., Mills, L.S., Griffin, P.C., 2002. Effects of plot size and shape on pellet density estimates for snowshoe hares. Wildl. Soc. Bull. 30, 751–755.Google Scholar
  49. Mowat, G., Slough, B.G., Boutin, S., 1996. Lynx recruitment during a snowshoe hare population peak and decline in southwest Yukon. J. Wildl. Manage. 60, 441–452.CrossRefGoogle Scholar
  50. Murray, D.L., Roth, J.D., Ellsworth, E., Wirsing, A.J., Steury, T.D., 2002. Estimating low-density snowshoe hare populations using faecal pellet counts. Can. J. Zool. 80, 771–781.CrossRefGoogle Scholar
  51. Myers, K., Parer, I., Richardson, B.J., 1989. Leporidae. In: Walton, D.W., Richardson, B.J. (Eds.), Mammalia, vol. 1B. Australian Government Publishing Service, Canberra, pp. 917–931.Google Scholar
  52. Newey, S., Bell, M., Enthoven, S., Thirgood, S., 2003. Can distance sampling and dung plots be used to assess the density of mountain hares Lepus timidus. Wildl. Biol. 9, 185–192.CrossRefGoogle Scholar
  53. Novaro, A.J., Funes, M.C., Walker, R.S., 2000. Ecological extinction of native prey by a carnivore assemblage in Argentine Patagonia. Biol. Conserv. 92, 25–33.CrossRefGoogle Scholar
  54. Palo, R.T., Bergstrom, R., Danell, K., 1992. Digestibility, distribution of phenols, and fiber at different twig diameters of birch in winter — implication for browsers. Oikos 65, 450–454.CrossRefGoogle Scholar
  55. Pearson, R.A., Merritt, J.B., 1991. Intake, digestion and gastro-intestinal transit time in resting donkeys and ponies and exercised donkeys given ad libitum hay and straw diets. Equine Vet. J. 23, 339–343.PubMedCrossRefGoogle Scholar
  56. Pickard, D.W., Stevens, C.E., 1972. Digesta flow through the rabbit large intestine. Am. J. Physiol. 222, 1161–1166.PubMedCrossRefGoogle Scholar
  57. Pond, W.G., Church, D.C., Pond, K.R., 1995. Basic Animal Nutrition and Feeding. Wiley, New York.Google Scholar
  58. Rangen, S.A., Hawley, A.W.L., Hudson, R.J., 1994. Relationship of snowshoe hare feeding preferences to nutrient and tannin content of 4 conifers. Can. J. For. Res. 24, 240–245.CrossRefGoogle Scholar
  59. Rao, S.J., Iason, G.R., Hulbert, I.A.R., Daniels, M.J., Racey, P.A., 2003. Tree browsing by mountain hares (Lepus timidus) in young Scots pine (Pinus sylvestris) and birch (Betula pendula) woodland. For. Ecol. Manage. 176, 459–471.CrossRefGoogle Scholar
  60. Rodgers, A.R., Sinclair, A.R.E., 1997. Diet choice and nutrition of captive snowshoe hares (Lepus americanus): interactions of energy, protein, and plant secondary compounds. Ecoscience 4, 163–169.CrossRefGoogle Scholar
  61. Sakaguchi, E., Kaizu, K., Nakamichi, M., 1992. Fibre digestion and digesta retention from different physical forms of the feed in the rabbit. Comp. Biochem. Physiol. 102A, 559–563.CrossRefGoogle Scholar
  62. Sauter, J.J., van Cleve, B., 1994. Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees: Struct. Funct. 8, 297–304.CrossRefGoogle Scholar
  63. Siciliano-Jones, J., Murphy, M.R., 1991. Specific gravity of various feedstuffs as affected by particle size and in vitro fermentation. J. Dairy Sci. 74, 896–901.CrossRefGoogle Scholar
  64. Sinclair, A.R.E., Krebs, C.J., Smith, J.N.M., 1982. Diet quality and food limitation in herbivores: the case of the snowshoe hare. Can. J. Zool. 60, 889–897.CrossRefGoogle Scholar
  65. Stott, P., 2003. Use of space by sympatric European hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) in Australia. Mamm. Biol. 68, 317–327.CrossRefGoogle Scholar
  66. Udén, P., Van Soest, P.J., 1982. Comparative digestion of Timothy (Phleum pratense) fiber by ruminants, equines and rabbits. Br. J. Nutr. 47, 267–272.PubMedCrossRefGoogle Scholar
  67. Van Soest, P.J., 1963. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fibre and lignin. J. Assoc. Off. Agric. Chem. 46, 829.Google Scholar
  68. Wallage-Drees, J.M., Deinum, B., 1986. Quality of the diet selected by wild rabbits (Oryctolagus cuniculus (L.)) in autumn and winter. Neth. J. Zool. 36, 438–448.Google Scholar
  69. Wattiaux, M.A., Satter, L.D., Mertens, D.R., 1992. Effect of microbial fermentation on functional specific gravity of small forage particles. J. Anim. Sci. 70, 1262.PubMedCrossRefGoogle Scholar
  70. Wolfe, A., Whelan, J., Hayden, T.J., 1996. The diet of the mountain hare (Lepus timidus hibernicus) on coastal grassland. J. Zool. (London) 240, 804–810.CrossRefGoogle Scholar
  71. Zar, J.H., 1999. Biostatistical Analysis. Prentice-Hall, Engle-wood Cliffs, NJ.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2007

Authors and Affiliations

  1. 1.Centre for Animal ScienceUniversity of AdelaideAdelaideAustralia

Personalised recommendations