Advertisement

Mammalian Biology

, Volume 73, Issue 3, pp 189–198 | Cite as

Eurasian badger habitat selection in Mediterranean environments: Does scale really matter?

  • L. M. RosalinoEmail author
  • Maria J. Santos
  • P. Beier
  • Margarida Santos-Reis
Original Investigation

Abstract

It is widely believed that spatial scale affects habitat selection, and should influence management options, especially for species with wide geographic distribution or large territories. Eurasian badger habitat selection has been well studied throughout most of its European distribution range, but never at multiple spatial scales. We used compositional analysis to assess habitat selection of Eurasian badgers in southern Portugal at four spatial scales (1, 4, 25, and 100 km2). We assessed habitat use from setts, latrines and footprints presence, and road kills. Oak woodlands with understorey were selected at all scales, being the most preferred habitat at 3 scales (1, 4, and 100 km2). Pastures were most selected at the scale of the 25 km2 cell, but their use was not significantly different from oak woodland with understorey. Shrubs and pastures were also secondly important at the majority of scales. Contrary to findings at northern latitudes, deciduous forests decreased in importance as cell size increased. In the highly humanized and fragmented landscape of southern Portugal, Eurasian badgers are selecting the matrix of oak woodlands interspersed with patches of pastures, shrubs and riparian vegetation. In these oak woodlands, scale does not have a marked effect. Management for badgers should provide, for at least, 30% of oak woodland cover at all scales. Our study illustrates the across-scale importance of maintaining the historically human altered, sustainable and unique landscape and land use system — the montado.

Keywords

Meles meles Landscape ecology Montado Portugal 

Habitatauswahl des eurasischen Dachses in mediterranen Gebieten: Ist die Wahl der untersuchten Biotopgrösse von Bedeutung?

Zusammenfassung

Es wird weithin angenommen, daß die Biotopgrösse die Wahl des Lebensraums beeinträchtigt, und daß dies die Landschaftsplanung beeinflussen sollte, besonders bei Tierarten mit ausgedehnten Lebensräumen und weiter geographischer Verbreitung.

Die Auswahl des Lebensraumes durch den eurasischen Dachs ist im Grossteil des europäischen Verbreitungsraumes weitgehend bekannt, jedoch wurden bei Untersuchungen niemals mehrfache Flächenmaße angewandt. Wir haben Kompositionsanalysen verwandt, um die Wahl des Lebensraumes von eurasischen Dachsen in Südportugal mittels fünf Rastergrössen (1, 4, 25, and 100 km2) unter Verwendung von Anwesenheitsanzeichen (Dachsbau, Dachsabtritte, Spuren, Strassenkadaver) abzuschätzen. Bei keiner Rastergrösse wurde die Wahl des Lebensraumes zufällig getroffen. Bei allen verwendeten Rastergrössen wurden Eichenwälder mit Unterwuchs ausgewaehlt, der bevorzugteste Lebensraum bei 4 Rastergrössen (1 m2, 4, 25, and 100 km2). Bei einer Rastergröße von 25 km2 wurden Weiden bevorzugt. Ferner waren bei der Mehrzahl der Rastergrössen Sträucher und Weiden von zweithäufigster Bedeutung. Im Gegensatz zu Ergebnissen aus nördlichen Breiten verloren Laubwälder mit zunehmender Rastergröße in Portugal an Bedeutung. In der stark bevölkerten und fragmentierten Landschaft Südportugals bevorzugen eurasische Dachse die Matrix von Eichenwäldern mit dazwischenliegenden Weiden, Sträuchern und Ufervegetation. In diesen offenen Eichenwäldern hat die Wahl der Rastergrösse keinen merklichen Effekt.

Die Landschafts- und Naturschutzplanung sollte deshalb mindestens 30% Eichenwaldanteil im Landschaftbild sicherstellen, um den Dachsbestand langfristig zu sichern. Unsere Fallstudie zeigt die Bedeutung historischer Kulturlandschaften wie des Montados für den Artenreichtum, Naturschutz und für die Sicherstellung einer zukunftsfähigen und ausgewogenen Landnutzung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebischer, N.J., Marcström, V., Kenward, R.E., Karlbom, M., 1993a. Survival and habitat utilisation: a case for compositional analysis. In: Lebreton, J.-D., North, P.M. (Eds.), Marked Individuals in the Study of Bird Population. Birkhäuser Verlag, Basel, pp. 343–353.Google Scholar
  2. Aebischer, N.J., Robertson, P.A., Kenward, R.E., 1993b. Compositional analysis of habitat use from animal radio-tracking data. Ecology 74, 1313–1325.CrossRefGoogle Scholar
  3. Aued, M.B., Chéhebar, C., Porro, G., Macdonald, D.W., Cassini, M.H., 2003. Environmental correlates of the distribution of southern river otters Lontra provocax at different ecological scales. Oryx 37, 413–421.CrossRefGoogle Scholar
  4. Betts, M.G., Diamond, A.W., Forbes, G.J., Villard, M.-A., Gunn, J.S., 2006. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol. Model. 191, 197–224.CrossRefGoogle Scholar
  5. Blondel, J., Aronson, J., 1999. Biology and Wildlife of the Mediterranean Region. Oxford University Press, Oxford.Google Scholar
  6. Brøseth, H., Knutsen, B., Bevanger, K., 1997. Spatial organization and habitat utilization of badgers Meles meles: effects of food patch dispersion in the boreal forest of central Norway. Z. Säugetierkunde 62, 12–22.Google Scholar
  7. Cheeseman, C.L., Jones, G.W., Gallagher, J., Mallinson, P.J., 1981. The population structure, density and prevalance of tuberculosis (Mycobacterium bovis) in badgers (Meles meles) from four areas in south-west England. J. Appl. Ecol. 18, 795–804.CrossRefGoogle Scholar
  8. Cheng, R.C.H., Stephens, M.A., 1986. A goodness-of-fit test using Moran’s statistic with estimated parameters. Biometrika 76, 385–392.CrossRefGoogle Scholar
  9. da Silva, J., Woodroffe, R., Macdonald, D.W., 1993. Habitat, food availability and group territoriality in the European badger, Meles meles. Oecologia 95, 558–564.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Diáz, M., Campos, P., Pulido, J., 1997. The Spanish dehesas: a diversity in land-use and wildlife. In: Pain, D.J., Pierkowski, M.W. (Eds.), Farming and Birds in Europe: The Common Agriculture Policy and its Implications for Bird Conservation. Academic Press, London, pp. 178–209.Google Scholar
  11. Englund, G., 1997. Importance of spatial scale and prey movements in predator caging experiments. Ecology 78, 2316–2325.CrossRefGoogle Scholar
  12. Epperson, B.K., Li, T., 1996. Measurement of genetic structure within populations using Moran’s I spatial autocorrelation statistics. Proceedings of the National Academy of Sciences 93, 10528–10532.CrossRefGoogle Scholar
  13. Feore, S., Montgomery, W.I., 1999. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. Lond. 247, 537–549.CrossRefGoogle Scholar
  14. Fortin, M.J., Drapeau, P., Legendre, P., 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83, 209–222.CrossRefGoogle Scholar
  15. Gergel, S.E., Turner, M.G., 2002. Learning Landscape Ecology. A Practical Guide to Concepts and Techniques. Springer, New York.CrossRefGoogle Scholar
  16. Good, T.C., Hindenlang, K., Imfeld, S., Nievergelt, B., 2001. A habitat analysis of badger (Meles meles L.) setts in a semi-natural forest. Mamm. Biol. 66, 204–214.Google Scholar
  17. Goszczynski, J., Jedrzejewska, B., Jedrzejewski, W., 2000. Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. J. Zool. Lond. 250, 495–505.CrossRefGoogle Scholar
  18. Grove, A.T., Rackham, O., 2003. The Nature of Mediterranean Europe. An Ecological History. Yale University Press, New Haven.Google Scholar
  19. Hartley, S., Kunin, W.E., 2003. Scale dependency of rarity, extinction risk, and conservation priority. Conserv. Biol. 17, 1559–1579.CrossRefGoogle Scholar
  20. Hay, G.L., Marceau, D.J., Dubé, P., Bouchard, A., 2001. Multiscale framework for landscape analysis: object-specific analysis and upscaling. Landscape Ecol. 16, 471–490.CrossRefGoogle Scholar
  21. Jepsen, J.U., Madsen, A.B., Karlsson, M., Groth, D., 2005. Predicting distribution and density of European badger (Meles meles) setts in Denmark. Biodivers. Conserv. 14, 3235–3253.CrossRefGoogle Scholar
  22. Kowalczyk, R., Zalewski, A., Jedrzejewska, B., Jedrzejewski, W., 2003. Spatial organization and demography of badgers (Meles meles) in Bialowieza Primeval Forest, Poland, and the influence of earthworms on badger densities in Europe. Can. J. Zool. 81, 74–87.CrossRefGoogle Scholar
  23. Kruuk, H., Parish, T., 1981. Feeding specialisation of the European badger Meles meles in Scotland. J. Anim. Ecol. 22, 705–715.CrossRefGoogle Scholar
  24. Kruuk, H., Parish, T., Brown, C.A.J., Carrera, J., 1979. The use of pasture by the European badger (Meles meles). J. Appl. Ecol. 16, 453–459.CrossRefGoogle Scholar
  25. Leban, F.A., Wisdom, M.J., Garton, E.O., Johnson, B.K., Kie, J.G., 2001. Effect of sample size on the performance of resource selection analyzes. In: Millspaugh, J.J., Marzluff, J.M. (Eds.), Radiotracking and Animal Populations. Academic Press, New York, pp. 291–307.CrossRefGoogle Scholar
  26. Levin, S.A., 1992. The problem of pattern and scale in ecology. Ecology 73, 1943–1967.CrossRefGoogle Scholar
  27. Makhzoumi, J.M., 1997. The changing role of rural landscapes: olive and carob multi-use tree plantations in the semiarid Mediterranean. Landscape Urban Plan. 37, 115–122.CrossRefGoogle Scholar
  28. Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralik, V., Zima, J., 1999. The Atlas of European Mammals. T & AD Poyser Ltd., London.Google Scholar
  29. Moran, P.A.P., 1950. Notes on continuous stochastic phenomena. Biometrika 37, 17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Moreira, F., Rego, F.R., Ferreira, P.G., 2001. Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landscape Ecol. 16, 557–567.CrossRefGoogle Scholar
  31. Morrison, M.L., Marcot, B.G., Mannan, R.W., 1998. Wildlife Habitat Relationships. Concepts and Applications. The University of Wisconsin Press, Madison.Google Scholar
  32. Neal, E., Cheeseman, C., 1996. Badgers. T & A Poyser Ltd., London.Google Scholar
  33. Pinto-Correia, T., 1993. Threatened landscape in Alentejo, Portugal: the Montado and other agro-silvo-pastoral systems. Landscape Urban Plan. 24, 43–48.CrossRefGoogle Scholar
  34. Pinto-Correia, T., 2000. Future development in Portuguese rural areas: how to manage agricultural support for landscape conservation? Landscape Urban Plan. 50, 95–106.CrossRefGoogle Scholar
  35. Pinto-Correia, T., Mascarenhas, J., 1999. Contribution to the extensification/intensification debate: new trends in the Portuguese montado. Landscape Urban Plan. 46, 125–131.CrossRefGoogle Scholar
  36. Plieninger, T., Pulido, F.J., Konold, W., 2003. Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for the conservation and restoration. Environ. Conserv. 30, 61–70.CrossRefGoogle Scholar
  37. Powell, R.A., 1994. Effects of scale on habitat selection and foraging behavior of fishers in winter. J. Mammal. 75, 349–356.CrossRefGoogle Scholar
  38. Revilla, E., Palomares, F., 2002. Does local feeding specialization exist in Eurasian badgers? Can. J. Zool. 80, 83–93.Google Scholar
  39. Revilla, E., Palomares, F., Delibes, M., 2000. Defining key habitats for low density populations of Eurasian badgers in Mediterranean environments. Biol. Conserv. 95, 269–277.CrossRefGoogle Scholar
  40. Rivas-Martínez, S., 1975. La vegetación de la clase Quercetea ilicis en España y Portugal. Anal. Inst. Bot. Cavanilles 25, 3–201.Google Scholar
  41. Rosalino, L.M., 2004. Environmental determinants of badger (Meles meles) density and sociality in Mediterranean woodlands. Ph.D. Thesis, University of Lisbon, Lisbon.Google Scholar
  42. Rosalino, L.M., Macdonald, D.W., Santos-Reis, M., 2004. Spatial structure and land cover use in a low density Mediterranean population of Eurasian badgers. Can. J. Zool. 83, 1493–1502.CrossRefGoogle Scholar
  43. Rosalino, L.M., Loureiro, F., Macdonald, D.W., Santos-Reis, M., 2005a. Dietary shifts of the badger Meles meles in Mediterranean woodlands: an opportunistic forager with seasonal specialisms. Mammal. Biol. 70, 12–23.CrossRefGoogle Scholar
  44. Rosalino, L.M., Macdonald, D.W., Santos-Reis, M., 2005b. Resource dispersion and badger population density in Mediterranean woodlands: is food, water or geology the limiting factor? Oikos 110, 441–452.CrossRefGoogle Scholar
  45. Sadlier, L.M.J., Webbon, C.C., Baker, P.J., Harris, S., 2004. Methods of monitoring red fox Vulpes vulpes and badgers Meles meles are field signs the answer? Mammal Rev. 34, 75–98.CrossRefGoogle Scholar
  46. Santos, M.J., 2003. Habitat selection by European badgers at multiple spatial scales: implications for the conservation of the montado. M.Sc. Thesis, Northern Arizona University, Arizona.Google Scholar
  47. Sawada, M., 1999. Rookcase: an excel 97/2000 visual basic (VB) add-in for exploring global and local spatial autocorrelation. Bull. Ecol. Soc. Am. 80, 231–234.CrossRefGoogle Scholar
  48. Schaefer, J.A., Bergman, C.M., Luttich, S.N., 2000. Site fidelity of female caribou at multiple spatial scales. Landscape Ecol. 15, 731–739.CrossRefGoogle Scholar
  49. Schonewald-Cox, C., Azari, R., Blume, S., 1991. Scale, variable density, and conservation planning for mammalian carnivores. Conserv. Biol. 5, 491–495.CrossRefGoogle Scholar
  50. Schooley, R.L., Wiens, J.A., 2001. Dispersion of kangaroo rat mounds at multiple scales in New Mexico, USA. Landscape Ecol. 16, 267–277.CrossRefGoogle Scholar
  51. Thompson, C.M., McGarigal, K., 2002. The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecol. 17, 569–586.CrossRefGoogle Scholar
  52. Turner, M.G., Dale, V.H., Gardner, R.H., 1989. Predicting across scales: theory development and testing. Landscape Ecol. 3, 245–252.CrossRefGoogle Scholar
  53. Turner, W.R., Tjørve, E., 2005. Scale-dependence in species area relationships. Ecography 28, 721–730.CrossRefGoogle Scholar
  54. Van Apeldoorn, R.C., Knaapen, J.P., Schippers, P., Verboon, J., Van Engen, H., Meeuwsen, H., 1998. Applying ecological knowledge in landscape planning: a simulation model as a tool to evaluate scenarios for the badger in the Netherlands. Landscape Urban Plan. 41, 57–69.CrossRefGoogle Scholar
  55. Virgós, E., 2001. Role of isolation and habitat quality in shaping species abundance: a test with badgers (Meles meles) in a gradient of forest fragmentation. J. Biogeogr. 28, 381–389.CrossRefGoogle Scholar
  56. Virgós, E., 2002. Are habitat generalists affected by forest fragmentation? A test with Eurasian badgers (Meles meles) in coarse-grained fragmented landscapes of central Spain. J. Zool. Lond. 258, 313–318.CrossRefGoogle Scholar
  57. Virgós, E., Revilla, E., Mangas, J.G., 2005. Factores que determinan la distributión y abundancia del tejón a escala de paisaje. In: Virgós, E., Mangas, J.G., Revilla, E., Roura, X.-D. (Eds.), Ecología y Conservatión del Tejón en Ecosistemas Mediterráneos. SECEM, Málaga, pp. 149–172.Google Scholar
  58. Wright, A., Fielding, A.H., Wheater, C.P., 2000. Predicting the distribution of Eurasian Badger (Meles meles) setts over an urbanized landscape: a GIS approach. Photogramm. Eng. Rem. S. 66, 423–428.Google Scholar
  59. Zar, J.H., 1999. Biostatistical Analysis. Prentice-Hall, Inc., Upper Saddle River, NJ.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2007

Authors and Affiliations

  • L. M. Rosalino
    • 1
    Email author
  • Maria J. Santos
    • 1
    • 2
    • 3
  • P. Beier
    • 3
  • Margarida Santos-Reis
    • 1
  1. 1.Faculdade de Ciência, Centro de Biologia Ambiental/Departamento de Biologia AnimalUniversidade de LisboaLisboaPortugal
  2. 2.Centre for Environmental Sciences and Education, Physical Sciences BuildingNorthern Arizona UniversityFlagstaffUSA
  3. 3.School of Forestry and Merriam-Powell Center for Environmental ResearchNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations