Mammalian Biology

, Volume 70, Issue 5, pp 291–299 | Cite as

An exploratory analysis of geographic genetic variation in southern African nyala (Tragelaphus angasii)

  • J. P. GroblerEmail author
  • D. M. Pretorius
  • Karen Botha
  • Antoinette Kotze
  • E. M. Hallerman
  • Bettine Jansen Van Vuuren
Original investigation


We report patterns of genetic variation based on microsatellite, allozyme and mitochondrial control region markers in nyala from geographic locations sampled in South Africa, Mozambique, Malawi and Zimbabwe. Highly significant differences were observed among allele frequencies at three microsatellite loci between populations from KwaZulu-Natal, Limpopo and Malawi, with the Malawi and KwaZulu-Natal groupings showing the highest differentiation (RST= 0.377). Allozyme frequencies showed minor, non-statistically significant regional differences among the South African populations, with maximum FST values of 0.048-0.067. Mitochondrial DNA analyses indicated a unique haplotype in each location sampled. Since none of these indices of population differentiation showed significant correlation to absolute geographic distance, we conclude that geographic variation in this species is probably a function of a distribution pattern stemming from habitat specificity. It is suggested that translocations among geographically distant regional populations be discouraged at present, pending a more elaborate investigation. Transfer of native individuals among local populations may, however, be required for minimizing the likelihood of inbreeding depression developing in small captive populations.


Tragelaphus angasii evolutionary significant unit 

Genetische Variation bei Nyala (Tragelaphus angasii) im südafrikanischen Verbreitungsraum


Unsere Studie befabßt sich mit Mustern der genetischen Variation in Nyala-Antilopen. Beprobt wurden die geographischen Standorte Südafrika, Mozambique, Malawi und Zimbabwe. Zwischen den untersuchten Populationen von Kwa Zulu Natal, Limpopo und Malawi wiesen die Allelfrequenzen in drei Mikrosatellitenloci höchst signifikante Unterschiede auf, wobei Malawi und Kwa Zulu Natal die höchste Differentiation (RST= 0.377) hervorbrachte. Allozymfrequenzen zeigten kleinere, statistisch nicht signifikante regionale Unterschiede unter den südafrikanischen Populationen mit maximalen FST-Werten von 0.048-0.067. Mitochondriale DNA-Analysen deuten in jeder Population auf einen einzigartigen Haplotyp hin. Da keine dieser Anzeichen für Populationsdifferenziation einen signifikanten Zusammenhang zur absoluten geographischen Distanz unterstützen, schlußfolgern wir, daß geographische Variation in dieser Spezies wahrscheinlich eine Funktion von Verteilungsmustern als Folge von Habitatspezifität darstellt. Von der Einführung habitatfremder Tiere ist bis zu einer detaillierteren Untersuchung abzuraten. Der Transfer einheimischer Individuen unter lokalen Populationen ist dagegen zu empfehlen, um mögliche Inzuchtdepressionen, für welche kleine in Gefangenschaft lebende Populationen anfa¨llig sind, zu minimieren.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bishop, M. D.; Kappes, S. M.; Keele, J. W.; Stone, R. T.; Sunden, S. L. F.; Hawkins, G. A.; Solinas-Tolido, S.; Fries, R.; Grosz, D.; Yoo, J.; Beattie, C. W. (1994): A genetic linkage map for cattle. Genetics 136, 619–639.PubMedPubMedCentralGoogle Scholar
  2. Bowen, B. W. (1999): Preserving genes species or ecosystems? Healing the fractured foundations of conservation policy. Mol. Ecol. 18, S5–S10.CrossRefGoogle Scholar
  3. Clement, M.; Posada, D.; Crandall, K. A. (2000): TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1660.CrossRefGoogle Scholar
  4. Cornuet, J. M.; Piry, S.; Luikart, G.; Estoup, A.; Solignac, M. (1999): New methods employing mutinous genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000.PubMedPubMedCentralGoogle Scholar
  5. Goodman, S. J. (1997): RST CALC: a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol. Ecol. 6, 881–885.CrossRefGoogle Scholar
  6. Grobler, J. P.; Taylor, P.; Pretorius, D. M.; Anderson, P. C. (1999): Fluctuating asymmetry and allozyme variation in an isolated springbok (Antidorcas marsupialis) population from the Chelmsford Nature Reserve. Acta Theriol. 44, 183–193.CrossRefGoogle Scholar
  7. Kappes, S. M.; Keele, J. W.; Stone, R. T.; McGraw, R. A.; Sonstegard, T. A.; Smith, T. P. L.; Lopez-Corrales, N. L.; Beattie, C. W. (1997): A second generation linkage mapof the bovine genome. Genome Res. 7, 235–249.CrossRefGoogle Scholar
  8. Michalakis, Y.; Excoffier, L. (1996): A genetic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142, 1061–1064.PubMedPubMedCentralGoogle Scholar
  9. Moritz, C. (2002): Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51, 238–254.CrossRefGoogle Scholar
  10. Nei, M. (1975): Molecular Population Genetics and Evolution. North-Holland, Amsterdam, The Netherlands.Google Scholar
  11. Raymond, M.; Rousset, R. (1995): GENEPOP (version 12): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249.CrossRefGoogle Scholar
  12. Schneider, S.; Roessli, D.; Excoffier, L. (2000): Arlequin, ver. 2000: a software for population genetic data analysis. Switzerland: Genetics and Biometry Laboratory, University of Geneva.Google Scholar
  13. Shields, G. F.; Kocher, T. D. (1991): Phylogenetic relationships of North American ursids based on analyses of mitochondrial DNA. Evolution 45, 218–221.CrossRefGoogle Scholar
  14. Skinner, J. D.; Smithers, H. N. (1990): The Mammals of the Southern African Subregion. Pretoria, South Africa: University of Pretoria.Google Scholar
  15. Slatkin, M. (1995): A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462.PubMedPubMedCentralGoogle Scholar
  16. Tamura, K.; Nei, M. (1993): Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.Google Scholar
  17. Van der Bank, F. H. (2002): A review of gene nomenclature for enzyme-coding loci generally used in allozyme studies. Trends Comp. Biochem. Physiol. 9, 197–203.Google Scholar
  18. Waples, R. S. (1995): Evolutionary significant units and the conservation of biological diversity under the endangered species act. Am. Fish. Symp. 17, 8–27.Google Scholar
  19. Yeh, F. C.; Yang, R.; Boyle, T. (1999): POPGENE ver. 3.31. Microsoft Window—based freeware for population genetic analysis.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2005

Authors and Affiliations

  • J. P. Grobler
    • 1
    Email author
  • D. M. Pretorius
    • 1
  • Karen Botha
    • 2
  • Antoinette Kotze
    • 2
  • E. M. Hallerman
    • 3
  • Bettine Jansen Van Vuuren
    • 4
  1. 1.Biodiversity, School of Molecular and Life SciencesUniversity of LimpopoSovengaSouth Africa
  2. 2.Animal Improvement InstituteAgricultural Research CouncilIreneSouth Africa
  3. 3.Department of Fisheries and Wildlife SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.Department of Botany and Zoology and DST Centre of Excellence for Invasion BiologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations