High-frequency AC electrospray ionization source for mass spectrometry of biomolecules


A novel high-frequency alternating current (AC) electrospray ionization (ESI) source has been developed for applications in mass spectrometry. The AC ESI source operates in a conical meniscus mode, analogous to the cone-jet mode of direct current (DC) electrosprays but with significant physical and mechanistic differences. In this stable conical-meniscus mode at frequencies greater than 50 kHz, the low mobility ions, which can either be cations or anions, are entrained within the liquid cone and ejected as droplets that eventually form molecular ions, thus making AC ESI a viable tool for both negative and positive mode mass spectrometry. The performance of the AC ESI source is qualitatively shown to be frequency-dependent and, for larger bio-molecules, the AC ESI source produced an ion signal intensity that is an order of magnitude higher than its DC counterpart.


  1. 1.

    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.

  2. 2.

    Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time of Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.

  3. 3.

    Griffin, J. T.; Smith, L. M. Single-Nucleotide Polymorphism Analysis by MALDI-TOF Mass Spectrometry. TIBTECH 2000, 18, 77–84.

  4. 4.

    Miranker, A.; Robinson, C. V.; Radford, S. E.; Dobson, C.M. Investigation of Protein Folding by Mass Spectrometry. FASEBJ 1996, 10, 93–101.

  5. 5.

    Ladaviere, C.; Lacroix, D. P.; Delolme, F. First Systematic MALDI/ESI Mass Spectrometry Comparison to Characterize Polystyrene Synthesized by Different Controlled Radical Polymerization. Macromolecules 2009, 42, 70–84.

  6. 6.

    Rostad, C. E.; Hostettler, F. D. Profiling Refined Hydrocarbon Fuels Using Polar Components. Environ. Forensics 2007, 8, 129–137.

  7. 7.

    Zeleny, J. Instability of Electrified Surfaces. Phys. Rev. 1917, 10, 1–6.

  8. 8.

    Taylor, G. I. Disintegration of Water Drops in an Electric Field. Proc. R. Soc. Lond. A 1964, 280, 383–397.

  9. 9.

    Kebarle, P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.

  10. 10.

    Maheshwari, S.; Chang, H.-C. Anomalous Conical Menisci Under an AC Field—Departure from DC Taylor Cone. App. Phys. Lett. 2006, 89(1/3), 234103.

  11. 11.

    Maheshwari, S.; Chang, H.-C. Effects of Bulk Charge and Momentum Relaxation Time Scales on AC Electrospraying. J. App. Phys. 2007, 102(1/6), 034902.

  12. 12.

    Chetwani, N.; Maheshwari, S.; Chang, H.-C. Universal Cone Angle of AC Electrosprays Due to Net Charge Entrainment. Phys. Rev. Lett. 2008, 101(1/4), 204501.

  13. 13.

    Marginean, I.; Nemes, P.; Vertes, A. A Stable Regime in Electrosprays. Phys. Rev. E 2007, 76(1/6), 026320.

  14. 14.

    Wang, P.; Maheshwari, S.; Chang, H.-C. Polyhedra Formation and Transient Cone Ejection of a Resonant Microdrop Forced by an AC Electric Field. Phys. Rev. Lett. 2006, 96(1/4), 254502.

Download references

Author information

Correspondence to David B. Go or Hsueh-Chia Chang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chetwani, N., Cassou, C.A., Go, D.B. et al. High-frequency AC electrospray ionization source for mass spectrometry of biomolecules. J Am Soc Mass Spectrom 21, 1852–1856 (2010).

Download citation


  • Alternate Current
  • Charged Droplet
  • Base Oligonucleotide
  • Alternate Current Field
  • Alternate Current Signal