Advertisement

Journal of Iron and Steel Research International

, Volume 22, Issue 12, pp 1156–1163 | Cite as

Passivation Behaviors of Super Martensitic Stainless Steel in Weak Acidic and Weak Alkaline NaCl Solutions

  • Jian Kang
  • Jun LiEmail author
  • Kun-yu Zhao
  • Xuan Bai
  • Qi-long Yong
  • Jie Su
Material

Abstract

The passivation behaviors of super martensitic stainless steels (SMSS) were studied by polarization curves at passive potential of −0.1 V and in various NaCl solutions, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) analysis. Electrochemical test results showed that, in alkaline solutions, passivation region width was wider, passivation current was smaller, and polarization resistance was greater; thus, the passive film of SMSS in alkaline solutions had better passivation behaviors than that in acidic solutions. The polarization curve and EIS of samples SMSS1 and SMSS2 were also used to study which sample had better passivation behaviors. All results demonstrated that passive film structure of SMSS1 sample was more stable, and capacity of passive film was enhanced. The impact of alloying elements on the passive film (SMSS) passivation capability was also discussed by XPS depth profiling, and XPS depth profiling showed that the composition of the passive film was mainly composed of Fe-oxide and Cr-oxide. So the passive film structures were mixed layers of Fe-oxide and Cr-oxide. Fe oxidation product and Cr oxidation product would help to improve the protective property of passive film, which could promote the formation of a passive film structure more stably and densely.

Key words

super martensitic stainless steel pH value polarization curve electrochemical impedance spectroscopy XPS depth profiling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kocijan, C. Donik, M. Jenko, Corros. Sci. 49 (2007) 2083–2098.CrossRefGoogle Scholar
  2. 2.
    M. F. Montemor, M. G. S. Ferreira, N. E. Hakiki, Corros. Sci. 42 (2000) 1635–1650.CrossRefGoogle Scholar
  3. 3.
    S. Mischler, A. Vogel, H. J. Mathieu, D. Landolt, Corros. Sci. 32 (1991) 925–944.CrossRefGoogle Scholar
  4. 4.
    M. Sánchez, H. Mahmoud, J. Solid State Electr. 16 (2012) 1193–1202.CrossRefGoogle Scholar
  5. 5.
    D. N. Zou, R. Liu, J. Li, W. Zhang, D. Wang, Y. Han, J. Iron Steel Res. Int. 21 (2014) No. 6, 630–636.CrossRefGoogle Scholar
  6. 6.
    X. C. Han, J. Li, K. Y. Zhao, W. Zhang, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 74–79.CrossRefGoogle Scholar
  7. 7.
    C. O. A. Olsson, D. Landolt, Electrochim. Acta 48 (2003) 1093–1104.CrossRefGoogle Scholar
  8. 8.
    S. Y. Kim, H. Kim, H. S. Kwan, Mater. Corros. 57 (2006) 835–842.CrossRefGoogle Scholar
  9. 9.
    S. Haupt, H. H. Strehblow, Corros. Sci. 37 (1995) 43–54.CrossRefGoogle Scholar
  10. 10.
    H. W. Hoppe, S. Haupt, H. H. Strehblow, Surf. Interface Anal. 21 (1994) 514–525.CrossRefGoogle Scholar
  11. 11.
    Z. Petrovic, N. Lajçi, M. Metikoš-Hukovic, R. Babic, J. Solid State Electr. 15 (2010) 1201–1207.CrossRefGoogle Scholar
  12. 12.
    J. Ding, L. Zhang, M. Lu, J. Wang, Z. Wen, W. Hao, Appl. Surf. Sci. 289 (2014) 33–41.CrossRefGoogle Scholar
  13. 13.
    A. Davoodi, M. Pakshir, M. Babaiee, G. R. Ebrahimi, Corros. Sci. 53 (2011) 399–408.CrossRefGoogle Scholar
  14. 14.
    E. James, Concrete Eng. Int. 6 (2002) 64–67.Google Scholar
  15. 15.
    D. V. Val, M. G. Stewart, Struct. Saf. 25 (2003) 343–362.CrossRefGoogle Scholar
  16. 16.
    K. M. Kim, K. Y. Kim, J. Power Sources 173 (2007) 917–924.CrossRefGoogle Scholar
  17. 17.
    W. Jiang, K. Y. Zhao, D. Ye, J. Li, Z. D. Li, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 61–65.CrossRefGoogle Scholar
  18. 18.
    D. Ye, J. Li, W. Jiang, J. Su, K. Zhao, Mater. Des. 41 (2012) 16–22.CrossRefGoogle Scholar
  19. 19.
    Y. R. Liu, D. Ye, Q. L. Yong, J. Su, K. Y. Zhao, W. Jiang, J. Iron Steel Res. Int. 18 (2011) No. 11, 60–66.CrossRefGoogle Scholar
  20. 20.
    Y. F. Chen, J. L. Luo, Electrochim. Acta 44 (1999) 2947–2957.CrossRefGoogle Scholar
  21. 21.
    A. Saatchi, M. A. Golozar, K. Raeissi, J. Appl. Electrochem. 40 (2010) 457–461.CrossRefGoogle Scholar
  22. 22.
    R. S. Lillard, G. S. Kanner, L. L. Daemen, Electrochim. Acta 47 (2002) 2473–2482.CrossRefGoogle Scholar
  23. 23.
    C. Boissy, C. A. Dumont, B. Normand, Electrochem. Commun. 26 (2013) 10–12.CrossRefGoogle Scholar
  24. 24.
    A. A. Hermas, M. S. Morad, Corros. Sci. 50 (2008) 2710–2717.CrossRefGoogle Scholar
  25. 25.
    B. Guitián, X. R. Nóvoa, B. Puga, Electrochim. Acta. 56 (2011) 7772–7779.CrossRefGoogle Scholar
  26. 26.
    H. Luo, C. F. Dong, K. Xiao, X. G. Li, Appl. Surf. Sci. 258 (2011) 631–639.CrossRefGoogle Scholar
  27. 27.
    V. Guiñón-Pina, A. Igual-Muñoz, J. García-Antón, Corros. Sci. 53 (2011) 575–581.CrossRefGoogle Scholar
  28. 28.
    A. Kocijan, D. K. Merl, M. Jenko, Corros. Sci. 53 (2011) 776–783.CrossRefGoogle Scholar
  29. 29.
    R. A. Antunes, M. C. L. Oliveira, G. Ett, V. Ett, Int. J. Energ. Res. 36 (2011) 12474–12485.Google Scholar
  30. 30.
    A. Popova, E. Sokolova, S. Raicheva, M. Christov, Corros. Sci. 45 (2003) 33–58.CrossRefGoogle Scholar
  31. 31.
    A. K. Iversen, Corros. Sci. 48 (2006) 1036–1058.CrossRefGoogle Scholar
  32. 32.
    Z. J. Zheng, Y. Gao, Y. Gui, M. Zhu, J. Solid State Electr. 18 (2014) 2201–2210.CrossRefGoogle Scholar
  33. 33.
    L. A. S. Ries, M. Da Cunha Belo, M. G. S. Ferreira, L. L. Muller, Corros. Sci. 50 (2008) 676–686.CrossRefGoogle Scholar
  34. 34.
    C. Hitz, A. Lasia, J. Electroanal. Chem. 500 (2001) 213–222.CrossRefGoogle Scholar
  35. 35.
    C. F. Chen, R. J. Jiang, J. S. Qian, S. Q. Zheng, Acta Phys. Chim. Sin. 25 (2009) 1213–1218.Google Scholar
  36. 36.
    A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, L. Schultz, Mater. Sci. Eng. A 267 (1999) 294–300.CrossRefGoogle Scholar
  37. 37.
    M. J. Carmezim, A. M. Simões, M. F. Montemor, M. Da Cunha Belo, Corros. Sci. 47 (2005) 581–591.CrossRefGoogle Scholar
  38. 38.
    S. Nagarajan, N. Rajendran, Corros. Sci. 51 (2009) 217–224.CrossRefGoogle Scholar
  39. 39.
    Y. H. Lin, R. G. Du, R. G. Hu, C. J. Lin, Acta Phys. Chim. Sin. 21 (2005) 740–745.Google Scholar
  40. 40.
    A. Irhzo, Y. Segui, N. Bui, F. Dabosi, Corros. Sci. 26 (1986) 769–780.CrossRefGoogle Scholar
  41. 41.
    J. S. Kim, P. J. Xiang, K. Y. Kim, Corrosion 61 (2005) 174–183.CrossRefGoogle Scholar
  42. 42.
    K. M. Kim, J. H. Kim, K. Y. Kim, ECS Trans. 25 (2009) 1823–1832.CrossRefGoogle Scholar
  43. 43.
    K. H. Lo, C. H. Shek, J. K. L. Lai, Mater. Sci. Eng. R 65 (2009) 39–104.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2015

Authors and Affiliations

  • Jian Kang
    • 1
  • Jun Li
    • 1
    Email author
  • Kun-yu Zhao
    • 1
  • Xuan Bai
    • 1
  • Qi-long Yong
    • 2
  • Jie Su
    • 2
  1. 1.Institute of Materials Science and EngineeringKunming University of Science and TechnologyKunming, YunnanChina
  2. 2.Institute of Structural MaterialsCentral Iron and Steel Research InstituteBeijingChina

Personalised recommendations