Advertisement

Journal of Iron and Steel Research International

, Volume 22, Issue 12, pp 1149–1155 | Cite as

Fatigue Performance of Microalloyed High-strength Rebar and Analysis of Fracture Mechanism

  • Peng-yan Lu
  • Yu Liu
  • Hua-jie WuEmail author
  • Gang Liu
  • Xiang Meng
  • Yang Xu
Material

Abstract

Fatigue performance of hot-rolled ribbed-steel bar with the yield strength of 500 MPa (HRB500) was studied with bend-rotating fatigue test at a stress ratio of R = − 1. It is determined by staircase method that its fatigue strength for 107 cycles is 451 MPa, which is higher than that of common carbon structural steel. This should be attributed to the fine-grain strengthening resulting from the high content of alloy element V and Thermo-Mechanical Control Process (TMCP). The S-N curve function is also obtained by nonlinear regression with three parameters power function. The fatigue fractures of the specimen were further analyzed with Scanning Electron Microscopy (SEM) and Energy Disperse Spectroscopy (EDS) to study the fracture mechanism. Taking into account microstructure, hardness and cleanliness of the material, it implies that the fatigue fractures of HRB500 rebar all arise from surface substrates in which many brittle inclusions are contained, and that the fatigue crack propagation is principally based on the mechanism of quasi-cleavage fracture, because of the intracrystalline hard spots leading to stress concentration and thus to the cracks. Moreover, the transient breaking area exhibits microvoid coalescence of ductile fracture due to the existing abundant inclusions.

Key words

HRB500 bend-rotating fatigue performance fracture mechanism inclusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. X. Wang, Z. B. Li, China Metallurgy 16 (2006) No. 6, 6–9.Google Scholar
  2. 2.
    Y. Cheng, Steel Rolling 24 (2007) No. 3, 64–66.Google Scholar
  3. 3.
    W. Chen, Z. Shi, Y. Zhao, Y. M. Yu, Transaction of Materials and Heat Treatment 31 (2010) No. 7, 77–82.Google Scholar
  4. 4.
    L. Zhao, Z. H. Zhang, J. T. Ju, M. B. Liu, Hot Working Technology 36 (2007) No. 18, 35–37.Google Scholar
  5. 5.
    C. F. Yang, Q. L. Wang, J. Iron Steel Res. Int. 15 (2008) No. 2, 81–86.CrossRefGoogle Scholar
  6. 6.
    X. L. Li, Z. H. Guo, Y. H. Rong, H. Y. Wu, S. F. Yao, Acta Metall. Sin. 50 (2014) No. 4, 439–446.Google Scholar
  7. 7.
    L. J. Wang, M. L. Yang, B. N. Yang, Metallurgical Standardization & Quality 44 (2006) No. 2, 26–28.Google Scholar
  8. 8.
    X. H. Meng, Z. Q. Bai, Metallurgical Standardization & Quality 43 (2005) No. 3, 31–34.Google Scholar
  9. 9.
    J. Z. Xiao, C. Z. Zhang, H. Falkner, Key Engineering Materials 324 (2006) 867–870.CrossRefGoogle Scholar
  10. 10.
    Y. Wang, J. Bergström, J. Iron Steel Res. Int. 14 (2007) No. 5, 137–141.CrossRefGoogle Scholar
  11. 11.
    Y. L. Yang, Z. Y. Cao, Z. S. Lian, J. Iron Steel Res. Int. 20 (2013) No. 6, 52–57.CrossRefGoogle Scholar
  12. 12.
    C. Zhou, Y. J. Zhang, W. J. Hui, J. Iron Steel Res. Int. 20 (2013) No. 12, 92–97.CrossRefGoogle Scholar
  13. 13.
    E. Bayraktar, I. M. Garcias, C. Bathias, Int. J. Fatigue 28 (2006) 1590–1602.CrossRefGoogle Scholar
  14. 14.
    Z. P. Zhang, Y. H. Qi, D. Denis, J. Iron Steel Res. Int. 14 (2007) No. 6, 68–73.CrossRefGoogle Scholar
  15. 15.
    S. L. Li, N. Li, X. D. Peng, J. Iron Steel Res. Int. 20 (2013) No. 2, 48–51.CrossRefGoogle Scholar
  16. 16.
    Y. R. Luo, C. X. Huang, Y. Guo, J. Iron Steel Res. Int. 19 (2012) No. 10, 47–53.CrossRefGoogle Scholar
  17. 17.
    A. Y. Jiang, J. Chen, W. L. Lin, Journal of Zhejiang University Engineering Science 47 (2013) 1566–1572.Google Scholar
  18. 18.
    W. Huang, L. Zhang, P. Wang, W. Shu, Architecture Technology 41 (2010) 242–245.Google Scholar
  19. 19.
    M. A. Saleem, A. Mirmiran, J. Xia, K. Mackie, Journal of Materials in Civil Engineering 25 (2013) 991–998.CrossRefGoogle Scholar
  20. 20.
    A. Semchenkov, V. Meshkov, A. Kvasnikov, Structural Concrete 10 (2009) No. 4, 203–209.CrossRefGoogle Scholar
  21. 21.
    Q. B. Yu, L. X. Liu, L. L. Xie, H. Feng, Building Science 25 (2009) No. 9, 108–110.Google Scholar
  22. 22.
    D. L. Shu, Engineering Mechanics Performance, China Machine Press, Beijing, 2007.Google Scholar
  23. 23.
    C. Li, G. D. Zhang, C. Xu, B. Su, Gas Turbine Experiment and Research 21 (2008) No. 2, 39–43.Google Scholar
  24. 24.
    H. J. Wu, P. Y. Lu, F. Yue, L. Zhou, W. W. Chen, D. L. You, J. Univ. Sci. Technol. Beijing 36 (2014) Suppl. 1, 230–234.Google Scholar
  25. 25.
    X. S. Jiang, Non-metallic Inclusions in Steel, Metallurgical Industry Press, Beijing, 2011.Google Scholar
  26. 26.
    M. M. Wang, Y. P. Zeng, X. S. Wang, X. S. Xie, H. M. Fan, J. Iron Steel Res. Int. 20 (2008) No. 7, 46–49.Google Scholar
  27. 27.
    X. S. Wang, F. Liang, Acta Metall. Sin. 41 (2005) 1272–1276.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2015

Authors and Affiliations

  • Peng-yan Lu
    • 1
  • Yu Liu
    • 2
  • Hua-jie Wu
    • 1
    • 3
    Email author
  • Gang Liu
    • 2
  • Xiang Meng
    • 1
  • Yang Xu
    • 1
  1. 1.Engineering Research InstituteUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations