Journal of Iron and Steel Research International

, Volume 22, Issue 12, pp 1118–1125 | Cite as

Silicon Strengthened CrAlVN Coatings

  • Qiang LiEmail author
  • Yue-xiu Qiu
  • Bo Li
  • Dong-liang Zhao
  • De-en Sun
  • De-hui Li


CrAlVN coatings are of good intrinsic mechanical and tribological properties but lack of strength. Silicon can provide nitride coating high strength and excellent oxidation resistance. Logically, the combination of CrAlVN and Si should provide a good candidate for dry machining. The effect of silicon content on CrAlSiVN coating’s mechanical, tribological properties and oxidation resistance was investigated. The coatings were deposited on cemented tungsten carbide and Si wafer (100) substrates in an in-line magnetron sputtering system. Grazing incidence X-ray diffractometer, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, electron probe micro-analyzer, X-ray photoelectron spectroscopy and Auger electron spectroscopy were employed to characterize the microstructure and chemistry. Nanoindentation and ball-on-disc tribo-tester were used in characterization of the mechanical and tribological properties. Incorporating with silicon, the CrAlVN coating was strengthened (hardness: 21.2 GPa up to 38.7 GPa); even after 2 h exposure to 700 °C in air, the hardness still maintains at 11.0 GPa.

Key words

CrAlSiVN coating magnetron sputtering mechanical performance tribological performance oxidation resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Miyake, A. Kishimoto, H. Hasegawa, Surf. Coat. Technol. 205 (2010) S290–S294.CrossRefGoogle Scholar
  2. 2.
    P. E. Hovsepian, Q. Luo, G. Robinson, M. Pittman, M. Howarth, D. Doerwald, R. Tietema, W. M. Sim, A. Deeming, T. Zeus, Surf. Coat. Technol. 201 (2006) 265–272.CrossRefGoogle Scholar
  3. 3.
    A. Gómez-Parra, M. Alvarez-Alcón, J. Salguero, M. Batista, M. Marcos, Wear 302 (2013) 1209–1218.CrossRefGoogle Scholar
  4. 4.
    W. D. Münz, MRS Bull. 28 (2003) 173–179.CrossRefGoogle Scholar
  5. 5.
    P. H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Prog. Mater. Sci. 51 (2006) 1032–1114.CrossRefGoogle Scholar
  6. 6.
    Y. X. Qiu, B. Li, J. W. Lee, D. L. Zhao, J. Iron Steel Res. Int. 21 (2014) No. 5, 545–550.CrossRefGoogle Scholar
  7. 7.
    R. Franz, J. Neidhardt, B. Sartory, R. Tessadri, C. Mitterer, Thin Solid Films 516 (2008) 6151–6157.CrossRefGoogle Scholar
  8. 8.
    K. Bobzin, N. Bagcivan, M. Ewering, R. H. Brugnara, S. Theiß, Surf. Coat. Technol. 205 (2011) 2887–2892.CrossRefGoogle Scholar
  9. 9.
    Q. Luo, Wear 271 (2011) 2058–2066.CrossRefGoogle Scholar
  10. 10.
    S. Veprek, S. Reiprich, Thin Solid Films 268 (1995) 64–71.CrossRefGoogle Scholar
  11. 11.
    S. Veprek, R. F. Zhang, M. G. J. Veprek-Heijman, S. H. Sheng, A. S. Argon, Surf. Coat. Technol. 204 (2010) 1898–1906.CrossRefGoogle Scholar
  12. 12.
    J. L. Endrino, S. Palacín, M. H. Aguirre, A. Gutiérrez, F. Schäfers, Acta Mater. 55 (2007) 2129–2135.CrossRefGoogle Scholar
  13. 13.
    S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepǐek, Surf. Coat. Technol. 194 (2005) 143–148.CrossRefGoogle Scholar
  14. 14.
    H. W. Chen, Y. C. Chan, J. W. Lee, J. G. Duh, Surf. Coat. Technol. 205 (2010) 1189–1194.CrossRefGoogle Scholar
  15. 15.
    J. Soldán, J. Neidhardt, B. Sartory, R. Kaindl, R. Cerstvý, P. H. Mayrhofer, R. Tessadri, P. Polcik, M. Lechthalter, C. Mitterer, Surf. Coat. Technol. 202 (2008) 3555–3562.CrossRefGoogle Scholar
  16. 16.
    K. Venkateswarlu, A. Chandra Bose, N. Rameshbabu, Physica B 405 (2010) 4256–4261.CrossRefGoogle Scholar
  17. 17.
    V. Podgursky, R. Nisumaa, E. Adoberg, A. Surzhenkov, A. Sivitski, P. Kulu, Wear 268 (2010) 751–755.CrossRefGoogle Scholar
  18. 18.
    J. W. Lee, Y. C. Chang, Surf. Coat. Technol. 202 (2007) 831–836.CrossRefGoogle Scholar
  19. 19.
    D. M. Lee, J. Mater. Sci. 24 (1989) 4375–4378.CrossRefGoogle Scholar
  20. 20.
    B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, Publishing Company, Inc., Reading, MA, 1978.Google Scholar
  21. 21.
    Binding Energies for Relevant Bonds Obtained from the XPS Database of the National Institute of Standards and Technology,, 10/2013.
  22. 22.
    B. V. Crist, Handbook of Monochromatic XPS Spectra, Vol. 1— The Elements and Native Oxides, XPS International Inc., 1999.Google Scholar
  23. 23.
    N. Cabrera, N. F. Mott, Rep. Prog. Phys. 12 (1948–1949) 163–184.CrossRefGoogle Scholar
  24. 24.
    S. Zhang, L. Li, A. Kumar, Materials Characterization Techniques, CRC Press Taylor & Francis Group, 2008.Google Scholar
  25. 25.
    J. Patscheider, T. Zehnder, M. Diserens, Surf. Coat. Technol. 146–147 (2001) 201–208.CrossRefGoogle Scholar
  26. 26.
    A. Bendavid, P. J. Martin, E. W. Preston, J. Cairney, Z. H. Xie, M. Hoffman, Surf. Coat. Technol. 201 (2006) 4139–4144.CrossRefGoogle Scholar
  27. 27.
    F. Fernandes, A. Loureiro, T. Polcar, A. Cavaleiro, Appl. Surf. Sci. 289 (2014) 114–123.CrossRefGoogle Scholar
  28. 28.
    D. Yu, C. Wang, X. Cheng, F. Zhang, Thin Solid Films 517 (2009) 4950–4955.CrossRefGoogle Scholar
  29. 29.
    Y. Y. Chang, C. Y. Hsiao, Surf. Coat. Technol. 204 (2009) 992–996.CrossRefGoogle Scholar
  30. 30.
    D. R. Gaskell, Introduction to the Thermodynamics of Materials, fourth ed., Taylor & Francis, New York, 2003.Google Scholar
  31. 31.
    Y. Qiu, S. Zhang, J. W. Lee, B. Li, Y. Wang, D. Zhao. Appl. Surf. Sci. 279 (2013) 189–196.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2015

Authors and Affiliations

  • Qiang Li
    • 1
    Email author
  • Yue-xiu Qiu
    • 1
    • 2
  • Bo Li
    • 2
  • Dong-liang Zhao
    • 2
  • De-en Sun
    • 3
  • De-hui Li
    • 1
  1. 1.Advanced Technology & Materials Co., Ltd.BeijingChina
  2. 2.Central Iron and Steel Research InstituteBeijingChina
  3. 3.School of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations