Journal of Iron and Steel Research International

, Volume 22, Issue 12, pp 1098–1106 | Cite as

DEM Simulation of Solid Flow Including Asymmetric Phenomena in COREX Shaft Furnace

  • Zhi-guo LuoEmail author
  • Heng Zhou
  • Tao Zhang
  • Yang You
  • Hai-feng Li
  • Zong-shu Zou
Metallurgy and Metal Working


Based on the principles of the discrete element method (DEM), a scaled-down model was established to analyze burden descending behavior, including asymmetric phenomena, throughout an entire COREX shaft furnace (SF). The applicability of the DEM model was validated by determining its accordance with a previous experiment. The effects of discharge rate and abnormal conditions on solid flow were described in terms of solid flow pattern and microscopic analysis. Results confirmed that the solid flow of the COREX SF can be divided into four different flow regions; the largest normal force exists at the top of the man-made dead zone, and the weak force network exists in the funnel flow region. The basic solid flow profile was identified as a clear Flat→U→W type. Increasing the discharge rate decreased the quasi-stagnant zone size, but did not affect the macroscopic motion of particles or the shape of patterns above the bustle. For asymmetric conditions, in which particles were discharged at different rates, the solid flow patterns were asymmetric. Under an abnormal condition where no particles were discharged from the left outlet, a sizeable stagnant zone was formed opposite to the working outlet, and “motionless” particles located in the left stagnant zone showed potential to increase the period of static contacts and sticking effect.

Key words

COREX shaft furnace solid flow discrete element method asymmetric phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. S. Zhou, Iron and Steel 40 (2005) No. 11, 1–8.Google Scholar
  2. 2.
    Y. X. Qu, Y. X. Yang, Z. S. Zou, C. Zeilstra, K. Meijer, R. Boom, ISIJ Int. 54 (2014) 2196–2205.CrossRefGoogle Scholar
  3. 3.
    B. Anameric, S. K. Kawatra, Miner. Process. Extr. Metall. 30 (2008) 1–51.CrossRefGoogle Scholar
  4. 4.
    N. Wang, X. M. Xie, Z. S. Zou, L. Guo, W. R. Xu, Y. S. Zhou, Steel Res. Int. 79 (2008) 547–552.CrossRefGoogle Scholar
  5. 5.
    Y. X. Qu, Z. S. Zou, Y. P. Xiao, ISIJ Int. 52 (2012) 2186–2193.CrossRefGoogle Scholar
  6. 6.
    H. F. Li, Z. G. Luo, Z. S. Zou, J. J. Sun, L. H. Han, Z. X. Di, J. Iron Steel Res. Int. 19 (2012) No. 9, 36–42.CrossRefGoogle Scholar
  7. 7.
    J. J. Sun, Z. G. Luo, Z. S. Zou, Powder Technol. 281 (2015) 159–166.CrossRefGoogle Scholar
  8. 8.
    L. H. Han, Z. G. Luo, X. L. Zhou, H. Zhou, Z. S. Zou, Y. Z. Zhang, J. Iron Steel Res. Int. 20 (2013) No. 3, 30–35.CrossRefGoogle Scholar
  9. 9.
    Q. Li, M. X. Feng, Z. S. Zou, ISIJ Int. 53 (2013) 1365–1371.CrossRefGoogle Scholar
  10. 10.
    L. H. Han, Z. G. Luo, H. Zhou, Z. S. Zou, Y. Z. Zhang, J. Iron Steel Res. Int. 22 (2015) No. 4, 304–310.CrossRefGoogle Scholar
  11. 11.
    Y. J. Lee, Powder Technol. 102 (1999) 194–201.CrossRefGoogle Scholar
  12. 12.
    H. Zhou, Z. S. Zou, Z. G. Luo, T. Zhang, Y. You, H. F. Li, Ironmak. Steelmak. 42 (2015) 209–216.CrossRefGoogle Scholar
  13. 13.
    M. Y. Kou, S. L. Wu, W. Shen, K. P. Du, L. H. Zhang, J. Sun, ISIJ Int. 53 (2013) 2080–2089.CrossRefGoogle Scholar
  14. 14.
    Q. F. Hou, M. Samman, J. Li, A. B. Yu, ISIJ Int. 54 (2014) 1772–1780.CrossRefGoogle Scholar
  15. 15.
    P. A. Cundall, O. D. L. Strack, Geotechnique 29 (1979) 47–65.CrossRefGoogle Scholar
  16. 16.
    H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A. B. Yu, Chem. Eng. Sci. 62 (2007) 3378–3396.CrossRefGoogle Scholar
  17. 17.
    H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A. B. Yu, Chem. Eng. Sci. 63 (2008) 5728–5770.CrossRefGoogle Scholar
  18. 18.
    H. Takahashi, N. Komatsu, ISIJ Int. 33 (1993) 655–663.CrossRefGoogle Scholar
  19. 19.
    B. Wright, P. Zulli, Z. Y. Zhou, A. B. Yu, Powder Technol. 208 (2011) 86–97.CrossRefGoogle Scholar
  20. 20.
    Z. Y. Zhou, H. P. Zhu, B. Wright, A. B. Yu, P. Zulli, Powder Technol. 208 (2011) 72–85.CrossRefGoogle Scholar
  21. 21.
    M. Shimizu, Y. Kimura, M. Isobe, C. R. Che, S. Inaba, Tetsu-to-Hagane 73 (1987) 194–201.CrossRefGoogle Scholar
  22. 22.
    S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue, T. Ariyama, Steel Res. Int. 82 (2011) 964–971.CrossRefGoogle Scholar
  23. 23.
    W. G. Li, Baosteel Technology (2008) No. 6, 11–18.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2015

Authors and Affiliations

  • Zhi-guo Luo
    • 1
    • 2
    Email author
  • Heng Zhou
    • 1
    • 2
  • Tao Zhang
    • 1
    • 2
  • Yang You
    • 1
    • 2
  • Hai-feng Li
    • 1
    • 2
  • Zong-shu Zou
    • 1
    • 2
  1. 1.School of Materials and MetallurgyNortheastern UniversityShenyang, LiaoningChina
  2. 2.Key Laboratory of Ecological Utilization of Multi-metallic Mineral of Education MinistryNortheastern UniversityShenyang, LiaoningChina

Personalised recommendations