Advertisement

Journal of Iron and Steel Research International

, Volume 22, Issue 12, pp 1085–1090 | Cite as

Analysis on Initial Defects Based on Mechanical State of Meniscus Shell

  • Xiang-ning MengEmail author
  • Ren-gan Lin
  • Jie Yang
  • Xiao-jing Zuo
  • Miao-yong Zhu
Metallurgy and Metal Working
  • 3 Downloads

Abstract

The meniscus shell plays an important role in slab quality and process operation for continuously cast steel. One decisive reason is initial solidifying shell and growing dendrite under the mechanical stress caused by mold oscillation and liquid steel flow to generate disturbance of casting. The mechanical state of meniscus shell was analyzed using mathematical models in combination with thermo-physical properties and flow rate of steel to shed light on the formation of initial defects. The results show that the mold oscillation is a critical factor on the initial crack formation because the periodic stress makes the shell bending. The formed crack may also expand and propagate due to the following secondary cooling and straightening behavior. The primary dendrite has high possibility to be broken by fluid flow in the solidification front to lead to the non-uniform thickness of solidifying shell. The inter-dendrite bridging is also likely to be formed to produce other internal defects, such as air hole and solute enrichment in the residual molten steel located in the bridging area.

Key words

continuous casting mold oscillation meniscus shell initial defect mathematical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Konishi, M. Militzer, J. K. Brimacombe, I. V. Samarasekera, Metall. Mater. Trans. B 33 (2002) 413–423.CrossRefGoogle Scholar
  2. 2.
    J. K. Brimacombe, K. Sorimachi, Metall. Trans. B 8 (1977) 489–505.CrossRefGoogle Scholar
  3. 3.
    M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, Y. Komatsu, ISIJ Int. 31 (1991) 254–261.CrossRefGoogle Scholar
  4. 4.
    W. Yan, W. Q. Chen, C. Lippold, H. C. Xu, Metall. Mater. Trans. B 44 (2013) 1466–1477.CrossRefGoogle Scholar
  5. 5.
    M. O. El-Bealy, Metall. Mater. Trans. B 45 (2014) 988–1017.CrossRefGoogle Scholar
  6. 6.
    S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi, H. Horiguchi, ISIJ Int. 30 (1990) 310–316.CrossRefGoogle Scholar
  7. 7.
    S. D. Chen, Z. F. Hu, Y. Y. Yuan, Y. Z. Luo, J. Iron Steel Res. Int. 18 (2011) Suppl. 2, 383–388.Google Scholar
  8. 8.
    N. B. Ma, Z. S. Lei, X. L. Jin, G. H. Cao, Y. B. Zhong, Z. M. Ren, Acta Metall. Sin. 44 (2008) 1019–1024.Google Scholar
  9. 9.
    B. Zhang, Z. L. Xue, Z. Liao, S. D. Wang, H. W. Zheng, J. F. Zhou, J. Iron Steel Res. Int. 21 (2014) Suppl. 1, 108–112.CrossRefGoogle Scholar
  10. 10.
    X. Z. Na, X. G. Wang, X. Z. Zhan, Y. Gan, J. Iron Steel Res. 17 (2005) No. 5, 31–34, 47.Google Scholar
  11. 11.
    X. N. Meng, M. Y. Zhu, Can. Metall. Q. 50 (2011) 45–53.CrossRefGoogle Scholar
  12. 12.
    J. Yang, X. N. Meng, M. Y. Zhu, Steel Res. Int. 85 (2014) 710–717.CrossRefGoogle Scholar
  13. 13.
    X. N. Meng, M. Y. Zhu, N. L. Chen, Acta Metall. Sin. 43 (2007) 839–846.Google Scholar
  14. 14.
    J. Pilling, A. Hellawell, Metall. Mater. Trans. A 27 (1996) 229–232.CrossRefGoogle Scholar
  15. 15.
    M. Y. Zhu, Modern Metallurgical Technology, Metallurgical Industry Press, Beijing, 2011.Google Scholar
  16. 16.
    J. J. Bikerman, Physical Surface, Academic Press, London, 1970.Google Scholar
  17. 17.
    X. N. Meng, M. Y. Zhu, J. Iron Steel Res. Int. 15 (2008) Suppl. 1, 510–516.Google Scholar
  18. 18.
    T. W. Clyne, M. Wolf, W. Kurz, Metall. Mater. Trans. B 13 (1982) 259–266.CrossRefGoogle Scholar
  19. 19.
    G. J. Davies, Y. K. Shin, Solidification Technology in the Foundry and Cast House, The Metal Society, London, 1979.Google Scholar
  20. 20.
    T. Matsumiya, T. Saeki, J. Tanaka, T. Ariyoshi, Tetsu-to-Hagané 68 (1982) No. 13, 108–117.CrossRefGoogle Scholar
  21. 21.
    M. Suzuki, M. Suzuki, C. Yu, T. Emi, ISIJ Int. 37 (1997) 375–382.CrossRefGoogle Scholar
  22. 22.
    E. D. Nijs, G. Coombes, T. Kuroda, in: InSteelCon 2011 Proceedings, Steel Institute VDEh Press, Düsseldorf, 2011, pp. 1–9.Google Scholar
  23. 23.
    F. J. Ma, G. H. Wen, G. Li, Res. Iron Steel 1 (2000) 10–14.Google Scholar
  24. 24.
    B. Mao, G. F. Zhang, A. W. Li, Theories and Techniques of Electromagnetic Stirring in Continuous Steel Casting, Metallurgical Industry Press, Beijing, 2012.Google Scholar
  25. 25.
    H. Mizukami, A. Yamanaka, ISIJ Int. 50 (2010) 435–444.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2015

Authors and Affiliations

  • Xiang-ning Meng
    • 1
    Email author
  • Ren-gan Lin
    • 1
  • Jie Yang
    • 1
  • Xiao-jing Zuo
    • 1
  • Miao-yong Zhu
    • 1
  1. 1.School of Materials and MetallurgyNortheastern UniversityShenyang, LiaoningChina

Personalised recommendations