Journal of Iron and Steel Research International

, Volume 22, Issue 12, pp 1069–1077 | Cite as

Population Evolution of Oxide Inclusions in Ti-stabilized Ultra-low Carbon Steels after Deoxidation

  • Wen Yang
  • Ying Zhang
  • Li-feng ZhangEmail author
  • Hao-jian Duan
  • Li Wang
Metallurgy and Metal Working


Population density function (PDF), which can eliminate the arbitrariness caused by the choice of the number and the size of bins compared to the well-used histograms, was introduced to analyze the amount of inclusions. The population evolution of oxide inclusions in forms of PDF in Ti-stabilized ultra-low carbon steels after deoxidation during industrial RH refining and continuous casting processes was analyzed using an automated SEM-EDS system. It was found that after deoxidation till the early stage of casting, the alumina inclusions exhibited a lognormal PDF distribution, and three factors including the existence of a large amount of alumina clusters, the generation of alumina from the reduction of Al-Ti-O inclusions and the reoxidation of molten steel were estimated as the reasons. The shape parameter σ was high after deoxidation and then decreased after Ti treatment, indicating that in a short period after deoxidation, the size of alumina inclusions was widely distributed. After Ti treatment, the distribution of inclusion size was more concentrated. The scale parameter m decreased with time during the whole refining process, indicating that the proportion of large inclusions decreased during refining. Contrarily, the Al-Ti-O inclusions presented a fractal PDF distribution except at the end of casting with fractal dimension D of 4.3, and the constant of proportionality C decreased with time during RH refining and increased during casting process. The reoxidation of steel by slag entrapped from ladle was considered as the reason for the lognormal PDF behavior of Al-Ti-O inclusions at the end of casting.

Key words

non-metallic inclusion population density function titanium treatment ultra-low carbon steel reoxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Wang, N. T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 40 (2009) 1022–1034.CrossRefGoogle Scholar
  2. 2.
    C. Wang, N. T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 40 (2009) 1005–1021.CrossRefGoogle Scholar
  3. 3.
    C. Wang, N. T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 41 (2010) 1084–1094.CrossRefGoogle Scholar
  4. 4.
    H. Matsuura, C. Wang, G. Wen, S. Sridhar, ISIJ Int. 47 (2007) 1265–1274.CrossRefGoogle Scholar
  5. 5.
    C. Bernhard, G. Xia, M. Egger, A. Pissenberger, S. K. Michelic, in: Proceedings of the 2012 Iron & Steel Technology Conference (Volume I), Association for Iron and Steel Technology, Warrendale, PA, 2012, pp. 2191–2200.Google Scholar
  6. 6.
    C. Wang, N. Verma, Y. Kwon, W. Tiekink, N. Kikuchi, S. Sridhar, ISIJ Int. 51 (2011) 375–381.CrossRefGoogle Scholar
  7. 7.
    D. C. Park, I. H. Jung, P. C. H. Rhee, H. G. Lee, ISIJ Int. 44 (2004) 1669–1678.CrossRefGoogle Scholar
  8. 8.
    W. C. Doo, D. Y. Kim, S. C. Kang, K. W. Yi, Met. Mater. Int. 13 (2007) 249–255.CrossRefGoogle Scholar
  9. 9.
    M. Wang, Y. P. Bao, H. Cui, H. J. Wu, W. S. Wu, ISIJ Int. 50 (2010) 1606–1611.CrossRefGoogle Scholar
  10. 10.
    C. Lyons, P. Kaushik, Steel Res. Int. 82 (2011) 1394–1403.CrossRefGoogle Scholar
  11. 11.
    P. Kaushik, H. Pielet, H. Yin, Ironmak. Steelmak. 36 (2009) 561–571.CrossRefGoogle Scholar
  12. 12.
    M. K. Sun, I. H. Jung, H. G. Lee, Met. Mater. Int. 14 (2008) 791–798.CrossRefGoogle Scholar
  13. 13.
    M. A. Van Ende, M. Guo, R. Dekkers, M. Burty, J. Van Dyck, P. T. Jones, B. Blanpain, P. Wollants, ISIJ Int. 49 (2009) 1133–1140.CrossRefGoogle Scholar
  14. 14.
    W. Yang, S. Li, Y. Li, X. Wang, L. Zhang, X. Liu, Q. Shan, in L. Zhang, A. Allanore, C. Wang, J. A. Yurko, J. Crapps (Eds.), Materials Processing Fundamentals, The Minerals, Metals & Materials Society, Warrendale, PA, 2013, pp. 3–16.Google Scholar
  15. 15.
    M. A. Van Ende, M. X. Guo, E. Zinngrebe, R. Dekkers, J. Proost, B. Blanpain, P. Wollants, Ironmak. Steelmak. 36 (2009) 201–208.CrossRefGoogle Scholar
  16. 16.
    E. Zinngrebe, C. Van Hoek, H. Visser, A. Westendorp, I. H. Jung, ISIJ Int. 52 (2012) 52–61.CrossRefGoogle Scholar
  17. 17.
    M. A. Van Ende, M. Guo, E. Zinngrebe, B. Blanpain, I. H. Jung, ISIJ Int. 53 (2013) 1974–1982.CrossRefGoogle Scholar
  18. 18.
    M. D. Higgins, American Mineralogist 85 (2000) 1105–1116.CrossRefGoogle Scholar
  19. 19.
    I. N. Bindeman, American Mineralogist 90 (2005) 1801–1815.CrossRefGoogle Scholar
  20. 20.
    W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu, Q. Shan, ISIJ Int. 53 (2013) 1401–1410.CrossRefGoogle Scholar
  21. 21.
    M. D. Higgins, CSD Corrections 1.40 [2015-03-15],
  22. 22.
    M. D. Higgins, American Mineralogist 87 (2002) 171–175.CrossRefGoogle Scholar
  23. 23.
    F. Ruby-Meyer, J. Lehmann, H. Gaye, Scand. J. Metall. 29 (2000) 206–212.CrossRefGoogle Scholar
  24. 24.
    I. H. Jung, G. Eriksson, P. Wu, A. Pelton, ISIJ Int. 49 (2009) 1290–1297.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2015

Authors and Affiliations

  • Wen Yang
    • 1
    • 2
  • Ying Zhang
    • 2
  • Li-feng Zhang
    • 1
    • 2
    Email author
  • Hao-jian Duan
    • 2
  • Li Wang
    • 3
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations