Coupling thermomechanical and microstructural FE analysis in plate rolling process

  • Xue-tong LiEmail author
  • Min-ting Wang
  • Feng-shan Du


Using three-dimensional rigid-viscoplastic finite element method (FEM), a coupling multivariable numerical simulation model for steel plate rolling has been established based on the physical metallurgy microstructural evolution rule and experiential equations. The effects of reduction, deformation temperature, and rolling speed on the deformation parameters and microstructure in plate rolling were investigated using the model. After a typical rolling process of steel plate 16Mn is simulated, the strain, temperature, and microstructure distributions are presented, as well as the ferrite grain transformation during the period of cooling. By comparing the calculated ferrite grain sizes with measured ones, the model is validated.

Key words

hot rolling plate FEM microstructure coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CHEN Jian-jiu, HE Da-lun. Controlled Rolling and Controlled Cooling Technologies Used in Modern Wide Heavy Plate Mill [J]. Baosteel Technol, 1999, 10(2): 10 (in Chinese).Google Scholar
  2. 2.
    Wells M A, Lloyd D J, Samarasekera I V, et al. Modeling the Microstructural Changes During Hot Tandem Rolling of AA5XXX Aluminum Alloys: Part I. Microstructural Evolution [J]. Metall Mater Trans, 1998, 29B(3): 611.CrossRefGoogle Scholar
  3. 3.
    WANG Min-ting, LI Xue-tong, DU Feng-shan, et al. A Coupled Thermal-Mechanical and Microstructural Simulation of the Cross Wedge Rolling Process and Experimental Verification [J]. Mater Sci Eng, 2005, 391A: 305.CrossRefGoogle Scholar
  4. 4.
    Pietrzyk M. FE Based Model of Structure Development in the Hot Rolling Process [J]. Steel Res, 1990, 61(12): 603.CrossRefGoogle Scholar
  5. 5.
    Karhausen K. Kopp T. Model for Integrated Process and Microstructure Simulation in Hot Forming [J]. Steel Res, 1992, 63(6): 247.CrossRefGoogle Scholar
  6. 6.
    Zhou S X. An Integrated Model for Hot Rolling of Steel Strips [J]. J Mater Process Technol, 2003, (134): 338.CrossRefGoogle Scholar
  7. 7.
    Kobayashi S, Oh S, Altan T. Metal Forming and the Finite-Element Method [M]. New York: Oxford University Press, 1989.Google Scholar
  8. 8.
    Devadas C, Samarasekera I V. Heat Transfer During Hot Rolling of Steel Strip [J]. Ironmak Steelmak, 1986, 1(6): 311.Google Scholar
  9. 9.
    Plocinniek C, Sauer W, Meyer P. A Numerical Model for Heat Transfer Analysis of Strip Rolled in Steckel Mills [A]. Beynon J, Ingham P, Teichert H, et al, eds. Proceedings of the 2nd International Conference Modeling of Metal Rolling Processes [C]. London: Institute of Materials, 1996. 531.Google Scholar
  10. 10.
    Kumar A, McCulloch C, Hawbolt E B, et al. Modeling Thermal and Microstructural Evolution on Runout Table of Hot Strip Rolling [J]. Mater Sci Technol, 1991, 7(4): 360.CrossRefGoogle Scholar
  11. 11.
    Goldsmith A, Waterma T. Handbook of Thermophysical Properties of Solid Materials [M]. New York: Macmillan, 1961.Google Scholar
  12. 12.
    Sellars C M, Whiteman A. Recrystallization and Grain Growth in Hot Rolling [J]. Met Science, 1979, 13: 187.CrossRefGoogle Scholar
  13. 13.
    Maccagno T M, Jonas J J, Hodgson P D. Spreadsheet Modeling of Grain Size Evolution During Rod Rolling [J]. ISIJ Int, 1996, 36(6): 720.CrossRefGoogle Scholar
  14. 14.
    Fulvio Siciliano Jr, Jonas J J. Mathematical Modeling of the Hot Strip Rolling of Microalloyed Nb, Multiply-Alloyed Cr-Mo, and Plain C-Mn Steels [J]. Metall Mater Trans, 2000, 31A(2): 511.Google Scholar
  15. 15.
    Hodgson P D, Gibbs R K. A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels [J]. ISIJ Int, 1992, 32(12): 1329.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2008

Authors and Affiliations

  1. 1.College of Mechanical EngineeringYanshan UniversityQinhuangdao, HebeiChina

Personalised recommendations