Skip to main content

Advertisement

Log in

Chromophore reduction plus reversible photobleaching: how the mKate2 “photoconversion” works

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

mKate red-to-green photoconversion is a non-canonical type of phototransformation in fluorescent proteins, with a poorly understood mechanism. We have hypothesized that the daughter mKate2 protein may also be photoconvertible, and that this phenomenon would be connected with mKate(2) chromophore photoreduction. Indeed, upon the intense irradiation of the protein sample supplemented by sodium dithionite, the accumulation of green as well as blue spectral forms is enhanced. The reaction was shown to be reversible upon the reductant’s removal. However, an analysis of the fluorescence microscopy data, absorption spectra, kinetics and time-resolved fluorescence spectroscopy revealed that the short-wavelength spectral forms of mKate(2) exist before photoactivation, that their fractions increase light-independently after dithionite addition, and that the conversion is facilitated by the photobleaching of the red chromophore form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Supplementary information is available along with an online-version of the manuscript at https://doi.org/10.1007/s43630-021-00060-8. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Chudakov, D. M., Matz, M. V., Lukyanov, S., & Lukyanov, K. A. (2010). Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews, 90(3), 1103–1163. https://doi.org/10.1152/physrev.00038.2009

    Article  CAS  PubMed  Google Scholar 

  2. Mishin, A. S., Belousov, V. V., Solntsev, K. M., & Lukyanov, K. A. (2015). Novel uses of fluorescent proteins. Current Opinion in Chemical Biology, 27, 1–9. https://doi.org/10.1016/j.cbpa.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Cardarelli, F. (2020). Back to the future: Genetically encoded fluorescent proteins as inert tracers of the intracellular environment. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21114164

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aglyamova, G. V., Hunt, M. E., Modi, C. K., & Matz, M. V. (2011). Multi-colored homologs of the green fluorescent protein from hydromedusa Obelia sp. Photochemical & Photobiological Sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology, 10(8), 1303–1309. https://doi.org/10.1039/c1pp05068k

    Article  CAS  Google Scholar 

  5. Lambert, G. G., Depernet, H., Gotthard, G., Schultz, D. T., Navizet, I., Lambert, T., & Shaner, N. C. (2020). Aequorea’s secrets revealed: New fluorescent proteins with unique properties for bioimaging and biosensing. PLoS Biology, 18(11), e3000936. https://doi.org/10.1371/journal.pbio.3000936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., & Lukyanov, S. A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nature biotechnology, 17(10), 969–973. https://doi.org/10.1038/13657

    Article  CAS  PubMed  Google Scholar 

  7. Salih, A., Larkum, A., Cox, G., Kühl, M., & Hoegh-Guldberg, O. (2000). Fluorescent pigments in corals are photoprotective. Nature, 408(6814), 850–853. https://doi.org/10.1038/35048564

    Article  CAS  PubMed  Google Scholar 

  8. Wiedenmann, J., Schenk, A., Röcker, C., Girod, A., Spindler, K.-D., & Nienhaus, G. U. (2002). A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11646–11651. https://doi.org/10.1073/pnas.182157199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karasawa, S., Araki, T., Nagai, T., Mizuno, H., & Miyawaki, A. (2004). Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. The Biochemical journal, 381(Pt 1), 307–312. https://doi.org/10.1042/BJ20040321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., & Matz, M. V. (2004). GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Molecular Biology and Evolution, 21(5), 841–850. https://doi.org/10.1093/molbev/msh079

    Article  CAS  PubMed  Google Scholar 

  11. Deheyn, D. D., Kubokawa, K., McCarthy, J. K., Murakami, A., Porrachia, M., Rouse, G. W., & Holland, N. D. (2007). Endogenous green fluorescent protein (GFP) in amphioxus. The Biological Bulletin, 213(2), 95–100. https://doi.org/10.2307/25066625

    Article  CAS  PubMed  Google Scholar 

  12. Lambert, T. J. (2019). FPbase: A community-editable fluorescent protein database. Nature Methods, 16(4), 277–278. https://doi.org/10.1038/s41592-019-0352-8

    Article  CAS  PubMed  Google Scholar 

  13. Lukyanov, K. A., Chudakov, D. M., Lukyanov, S., & Verkhusha, V. V. (2005). Innovation: Photoactivatable fluorescent proteins. Nature Reviews. Molecular Cell Biology, 6(11), 885–891. https://doi.org/10.1038/nrm1741

    Article  CAS  PubMed  Google Scholar 

  14. Adam, V., Berardozzi, R., Byrdin, M., & Bourgeois, D. (2014). Phototransformable fluorescent proteins: Future challenges. Current Opinion in Chemical Biology, 20, 92–102. https://doi.org/10.1016/j.cbpa.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  15. Chang, H., Zhang, M., Ji, W., Chen, J., Zhang, Y., Liu, B., & Xu, T. (2012). A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4455–4460. https://doi.org/10.1073/pnas.1113770109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jablonski, A. E., Vegh, R. B., Hsiang, J.-C., Bommarius, B., Chen, Y.-C., Solntsev, K. M., & Dickson, R. M. (2013). Optically modulatable blue fluorescent proteins. Journal of the American Chemical Society, 135(44), 16410–16417. https://doi.org/10.1021/ja405459b

    Article  CAS  PubMed  Google Scholar 

  17. Pennacchietti, F., Serebrovskaya, E. O., Faro, A. R., Shemyakina, I. I., Bozhanova, N. G., Kotlobay, A. A., & Testa, I. (2018). Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy. Nature Methods, 15(8), 601–604. https://doi.org/10.1038/s41592-018-0052-9

    Article  CAS  PubMed  Google Scholar 

  18. Chudakov, D. M., Verkhusha, V. V., Staroverov, D. B., Souslova, E. A., Lukyanov, S., & Lukyanov, K. A. (2004). Photoswitchable cyan fluorescent protein for protein tracking. Nature Biotechnology, 22(11), 1435–1439. https://doi.org/10.1038/nbt1025

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, M., Chang, H., Zhang, Y., Yu, J., Wu, L., Ji, W., & Xu, T. (2012). Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nature Methods, 9(7), 727–729. https://doi.org/10.1038/nmeth.2021

    Article  CAS  PubMed  Google Scholar 

  20. Patterson, G. H., & Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science, (New York, N.Y.), 297(5588), 1873–1877. https://doi.org/10.1126/science.1074952

    Article  CAS  Google Scholar 

  21. Chudakov, D. M., Belousov, V. V., Zaraisky, A. G., Novoselov, V. V., Staroverov, D. B., Zorov, D. B., & Lukyanov, K. A. (2003). Kindling fluorescent proteins for precise in vivo photolabeling. (pp. 191–194). United States. https://doi.org/10.1038/nbt778

  22. Adam, V., Moeyaert, B., David, C. C., Mizuno, H., Lelimousin, M., Dedecker, P., & Hofkens, J. (2011). Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chemistry & Biology, 18(10), 1241–1251. https://doi.org/10.1016/j.chembiol.2011.08.007

    Article  CAS  Google Scholar 

  23. Solovyev, I. D., Gavshina, A. V., & Savitsky, A. P. (2019). Novel phototransformable fluorescent protein SAASoti with unique photochemical properties. International Journal of Molecular Sciences, 20(14), 3399. https://doi.org/10.3390/ijms20143399

    Article  PubMed Central  Google Scholar 

  24. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, N.Y.), 313(5793), 1642–1645. https://doi.org/10.1126/science.1127344

    Article  Google Scholar 

  25. Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10), 793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nienhaus, K., & Nienhaus, G. U. (2014). Fluorescent proteins for live-cell imaging with super-resolution. Chemical Society Reviews, 43(4), 1088–1106. https://doi.org/10.1039/c3cs60171d

    Article  CAS  PubMed  Google Scholar 

  27. Li, H., & Vaughan, J. C. (2018). Switchable fluorophores for single-molecule localization microscopy. Chemical Reviews, 118(18), 9412–9454. https://doi.org/10.1021/acs.chemrev.7b00767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Acharya, A., Bogdanov, A. M., Grigorenko, B. L., Bravaya, K. B., Nemukhin, A. V., Lukyanov, K. A., & Krylov, A. I. (2017). Photoinduced chemistry in fluorescent proteins: Curse or blessing? Chemical Reviews, 117(2), 758–795. https://doi.org/10.1021/acs.chemrev.6b00238

    Article  CAS  PubMed  Google Scholar 

  29. Bogdanov, A. M., Mishin, A. S., Yampolsky, I. V., Belousov, V. V., Chudakov, D. M., Subach, F. V., & Lukyanov, K. A. (2009). Green fluorescent proteins are light-induced electron donors. Nature Chemical Biology, 5(7), 459–461. https://doi.org/10.1038/nchembio.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Subach, O. M., Patterson, G. H., Ting, L.-M., Wang, Y., Condeelis, J. S., & Verkhusha, V. V. (2011). A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods, 8(9), 771–777. https://doi.org/10.1038/nmeth.1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gorbachev, D. A., Petrusevich, E. F., Kabylda, A. M., Maksimov, E. G., Lukyanov, K. A., Bogdanov, A. M., & Mishin, A. S. (2020). A general mechanism of green-to-red photoconversions of GFP. Frontiers in Molecular Biosciences, 7, 176. https://doi.org/10.3389/fmolb.2020.00176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herman, P., Holoubek, A., & Brodska, B. (2019). Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochimica et Biophysica Acta. General Subjects, 1863(1), 266–277. https://doi.org/10.1016/j.bbagen.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  33. Kremers, G.-J., Hazelwood, K. L., Murphy, C. S., Davidson, M. W., & Piston, D. W. (2009). Photoconversion in orange and red fluorescent proteins. Nature Methods, 6(5), 355–358. https://doi.org/10.1038/nmeth.1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verkhusha, V. V., Chudakov, D. M., Gurskaya, N. G., Lukyanov, S., & Lukyanov, K. A. (2004). Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chemistry & Biology, 11(6), 845–854. https://doi.org/10.1016/j.chembiol.2004.04.007

    Article  CAS  Google Scholar 

  35. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22(12), 1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  PubMed  Google Scholar 

  36. Pletneva, N., Pletnev, S., Tikhonova, T., Popov, V., Martynov, V., & Pletnev, V. (2006). Structure of a red fluorescent protein from Zoanthus, zRFP574, reveals a novel chromophore. Acta Crystallographica Section D, Biological Crystallography, 62(Pt 5), 527–532. https://doi.org/10.1107/S0907444906007852

    Article  CAS  Google Scholar 

  37. Pakhomov, A. A., & Martynov, V. I. (2007). Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2. Biochemistry, 46(41), 11528–11535. https://doi.org/10.1021/bi700721x

    Article  CAS  PubMed  Google Scholar 

  38. Pletneva, N., Pletnev, V., Tikhonova, T., Pakhomov, A. A., Popov, V., Martynov, V. I., & Pletnev, S. (2007). Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Acta Crystallographica. Section D, Biological Crystallography, 63(Pt 10), 1082–1093. https://doi.org/10.1107/S0907444907042461

    Article  CAS  PubMed  Google Scholar 

  39. Kim, S. E., Hwang, K. Y., & Nam, K. H. (2019). Spectral and structural analysis of a red fluorescent protein from Acropora digitifera. Protein Science: A Publication of the Protein Society, 28(2), 375–381. https://doi.org/10.1002/pro.3540

    Article  CAS  Google Scholar 

  40. Marchant, J. S., Stutzmann, G. E., Leissring, M. A., LaFerla, F. M., & Parker, I. (2001). Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nature Biotechnology, 19(7), 645–649. https://doi.org/10.1038/90249

    Article  CAS  PubMed  Google Scholar 

  41. Snellenburg, J. J., Laptenok, S., Seger, R., Mullen, K. M., & van Stokkum, I. H. M. (2012). Glotaran: A java-based graphical user interface for the R package TIMP. Journal of Statistical Software, Articles, 49(3), 1–22. https://doi.org/10.18637/jss.v049.i03

    Article  Google Scholar 

  42. Subach, F. V., & Verkhusha, V. V. (2012). Chromophore transformations in red fluorescent proteins. Chemical Reviews, 112(7), 4308–4327. https://doi.org/10.1021/cr2001965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Subach, O. M., Gundorov, I. S., Yoshimura, M., Subach, F. V., Zhang, J., Grüenwald, D., & Verkhusha, V. V. (2008). Conversion of red fluorescent protein into a bright blue probe. Chemistry & Biology, 15(10), 1116–1124. https://doi.org/10.1016/j.chembiol.2008.08.006

    Article  CAS  Google Scholar 

  44. Reid, B. G., & Flynn, G. C. (1997). Chromophore formation in green fluorescent protein. Biochemistry, 36(22), 6786–6791. https://doi.org/10.1021/bi970281w

    Article  CAS  PubMed  Google Scholar 

  45. Cloin, B. M. C., De Zitter, E., Salas, D., Gielen, V., Folkers, G. E., Mikhaylova, M., & Kapitein, L. C. (2017). Efficient switching of mCherry fluorescence using chemical caging. Proceedings of the National Academy of Sciences of the United States of America, 114(27), 7013–7018. https://doi.org/10.1073/pnas.1617280114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heppert, J. K., Dickinson, D. J., Pani, A. M., Higgins, C. D., Steward, A., Ahringer, J., & Goldstein, B. (2016). Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system. Molecular Biology of the Cell, 27(22), 3385–3394. https://doi.org/10.1091/mbc.E16-01-0063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chattoraj, M., King, B. A., Bublitz, G. U., & Boxer, S. G. (1996). Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8362–8367. https://doi.org/10.1073/pnas.93.16.8362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., & Chudakov, D. M. (2007). Bright far-red fluorescent protein for whole-body imaging. Nature Methods, 4(9), 741–746. https://doi.org/10.1038/nmeth1083

    Article  CAS  PubMed  Google Scholar 

  49. Shcherbo, D., Murphy, C. S., Ermakova, G. V., Solovieva, E. A., Chepurnykh, T. V., Shcheglov, A. S., & Chudakov, D. M. (2009). Far-red fluorescent tags for protein imaging in living tissues. The Biochemical Journal, 418(3), 567–574. https://doi.org/10.1042/BJ20081949

    Article  CAS  PubMed  Google Scholar 

  50. Cranfill, P. J., Sell, B. R., Baird, M. A., Allen, J. R., Lavagnino, Z., de Gruiter, H. M., & Piston, D. W. (2016). Quantitative assessment of fluorescent proteins. Nature Methods, 13(7), 557–562. https://doi.org/10.1038/nmeth.3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shemiakina, I. I., Ermakova, G. V., Cranfill, P. J., Baird, M. A., Evans, R. A., Souslova, E. A., & Shcherbo, D. (2012). A monomeric red fluorescent protein with low cytotoxicity. Nature Communications, 3, 1204. https://doi.org/10.1038/ncomms2208

    Article  CAS  PubMed  Google Scholar 

  52. Dean, K. M., Lubbeck, J. L., Binder, J. K., Schwall, L. R., Jimenez, R., & Palmer, A. E. (2011). Analysis of red-fluorescent proteins provides insight into dark-state conversion and photodegradation. Biophysical Journal, 101(4), 961–969. https://doi.org/10.1016/j.bpj.2011.06.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manna, P., & Jimenez, R. (2015). Time and frequency-domain measurement of ground-state recovery times in red fluorescent proteins. The Journal of Physical Chemistry. B, 119(15), 4944–4954. https://doi.org/10.1021/acs.jpcb.5b00950

    Article  CAS  PubMed  Google Scholar 

  54. Klementieva, N. V., Pavlikov, A. I., Moiseev, A. A., Bozhanova, N. G., Mishina, N. M., Lukyanov, S. A., & Mishin, A. S. (2017). Intrinsic blinking of red fluorescent proteins for super-resolution microscopy. Chemical Communications (Cambridge, England), 53(5), 949–951. https://doi.org/10.1039/c6cc09200d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (RSCF), Grant № 20-14-00255. The funders of the study had no part in the writing, analysis, interpretation, or decision to submit the paper. Experiments were partially carried out using equipment provided by the IBCH core facility (CKP IBCH, supported by Russian Ministry of Education and Science, Grant RFMEFI62117X0018).

Funding

This study was supported by the Russian Science Foundation (RSCF), Grant № 20–14-00255.

Author information

Authors and Affiliations

Authors

Contributions

EAP: investigation, formal analysis, software; ASM: validation, investigation; KAL: conceptualization, supervision, resources; EGM: methodology, validation, formal analysis, investigation, visualization; AMB: conceptualization, investigation, project administration, funding acquisition. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Alexey M. Bogdanov.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer - a topical issue in honour of Klaus Brettel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protasova, E.A., Mishin, A.S., Lukyanov, K.A. et al. Chromophore reduction plus reversible photobleaching: how the mKate2 “photoconversion” works. Photochem Photobiol Sci 20, 791–803 (2021). https://doi.org/10.1007/s43630-021-00060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00060-8

Keywords

Navigation