Accelerated Versus Non-accelerated Rehabilitation After Primary Anterior Cruciate Ligament Reconstruction Using Hamstring Autografts: A Systematic Review and Meta-analysis of Comparative Studies

Abstract

Purpose

This study aimed to compare the clinical outcomes between accelerated rehabilitation (AR) and non-accelerated rehabilitation (NR) after anterior cruciate ligament reconstruction (ACLR) using hamstring autografts through a systematic review and meta-analysis.

Methods

To compare the outcomes between AR and NR, we searched Medline, Embase, and the Cochrane Library. Studies comparing their clinical outcomes after ACLR using hamstring autografts were included. AR was characterized by the starting range of motion and weight-bearing within 3 days and return to sports within 6–9 months. A meta-analysis of clinical outcome parameters used in ≥ 3 studies was conducted.

Results

Seven studies were included. The International Knee Documentation Committee subjective score was significantly higher in AR than in NR at the 3- (mean difference [MD], 7.30; 95% confidence interval [CI] 1.55–13.05; P = 0.013) and 6-month follow-ups (MD, 5.64; 95% CI 0.11–11.17; P = 0.046). The side-to-side difference in anterior tibial translation at the final follow-up assessed in four studies was significantly lower in NR than in AR (MD, 0.59; 95% CI 0.12–1.07; P = 0.015). Overall Tunnel widening at the final follow-up assessed in four studies was also smaller in NR than in AR (MD, 0.48; 95% CI 0.00–0.96; P = 0.0479). However, the mean side-to-side difference and overall tunnel widening between them was < 1 mm.

Conclusion

The early subjective clinical outcomes of AR after ACLR using hamstring autografts were superior to those of NR. Although tunnel widening and anterior instability were also significantly larger in AR than in NR, the difference was not clinically relevant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Gokeler, A., Welling, W., Zaffagnini, S., Seil, R., & Padua, D. (2017). Development of a test battery to enhance safe return to sports after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 25, 192–199.

    PubMed  Article  Google Scholar 

  2. 2.

    van Melick, N., van Cingel, R. E., Brooijmans, F., Neeter, C., van Tienen, T., Hullegie, W., & Nijhuis-van der Sanden, M. W. (2016). Evidence-based clinical practice update: Practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. British Journal of Sports Medicine, 50, 1506–1515.

    PubMed  Article  Google Scholar 

  3. 3.

    Wright, R. W., Haas, A. K., Anderson, J., Calabrese, G., Cavanaugh, J., Hewett, T. E., et al. (2015). Anterior cruciate ligament reconstruction rehabilitation: MOON guidelines. Sports Health, 7, 239–243.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kim, H. S., Seon, J. K., & Jo, A. R. (2013). Current trends in anterior cruciate ligament reconstruction. Knee Surgery & Related Research, 25, 165.

    Article  Google Scholar 

  5. 5.

    Makhni, E. C., Crump, E. K., Steinhaus, M. E., Verma, N. N., Ahmad, C. S., Cole, B. J., & Bach, B. R., Jr. (2016). Quality and variability of online available physical therapy protocols from academic orthopaedic surgery programs for anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32, 1612–1621.

    Article  Google Scholar 

  6. 6.

    Wright, R. W., Preston, E., Fleming, B. C., Amendola, A., Andrish, J. T., Bergfeld, J. A., et al. (2008). A systematic review of anterior cruciate ligament reconstruction rehabilitation–part I: Continuous passive motion, early weight bearing, postoperative bracing, and home-based rehabilitation. Journal of Knee Surgery, 21, 217–224.

    PubMed  Article  Google Scholar 

  7. 7.

    Shelbourne, K. D., & Nitz, P. (1990). Accelerated rehabilitation after anterior cruciate ligament reconstruction. American Journal of Sports Medicine, 18, 292–299.

    CAS  Article  Google Scholar 

  8. 8.

    Shelbourne, K. D., Klootwyk, T. E., & Decarlo, M. S. (1992). Update on accelerated rehabilitation after anterior cruciate ligament reconstruction. Journal of Orthopaedic & Sports Physical Therapy, 15, 303–308.

    CAS  Article  Google Scholar 

  9. 9.

    Decarlo, M. S., Shelbourne, K. D., McCarroll, J. R., & Rettig, A. C. (1992). Traditional versus accelerated rehabilitation following ACL reconstruction: A one-year follow-up. Journal of Orthopaedic & Sports Physical Therapy, 15, 309–316.

    CAS  Article  Google Scholar 

  10. 10.

    Draper, V., & Ladd, C. (1993). Subjective evaluation of function following moderately accelerated rehabilitation of anterior cruciate ligament reconstructed knees. Journal of Athletic Training, 28, 38–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Shelbourne, K. D., & Gray, T. (1997). Anterior cruciate ligament reconstruction with autogenous patellar tendon graft followed by accelerated rehabilitation. A two- to nine-year followup. American Journal of Sports Medicine, 25, 786–795.

    CAS  Article  Google Scholar 

  12. 12.

    Shelbourne, K. D., Klootwyk, T. E., Wilckens, J. H., & De Carlo, M. S. (1995). Ligament stability two to six years after anterior cruciate ligament reconstruction with autogenous patellar tendon graft and participation in accelerated rehabilitation program. American Journal of Sports Medicine, 23, 575–579.

    CAS  Article  Google Scholar 

  13. 13.

    Budny, J., Fox, J., Rauh, M., & Fineberg, M. (2017). Emerging trends in anterior cruciate ligament reconstruction. Journal of Knee Surgery, 30, 63–69.

    PubMed  Article  Google Scholar 

  14. 14.

    Hardy, A., Casabianca, L., Andrieu, K., Baverel, L., & Noailles, T. (2017). Complications following harvesting of patellar tendon or hamstring tendon grafts for anterior cruciate ligament reconstruction: Systematic review of literature. Orthopaedics & Traumatology: Surgery & Research, 103, S245–S248.

    CAS  Google Scholar 

  15. 15.

    Seo, S.-S., Kim, C.-W., Nam, T.-S., & Choi, S.-Y. (2011). ACL reconstruction with autologous hamstring tendon: Comparison of short term clinical results between Rigid-fix and PINN-ACL cross pin. Knee surgery & related research, 23, 208.

    Article  Google Scholar 

  16. 16.

    Kyung, H.-S., Baek, S.-G., Lee, B.-J., & Lee, C.-H. (2015). Single-bundle anterior cruciate ligament reconstruction with semitendinosus tendon using the PINN-ACL CrossPin system: Minimum 4-year follow-up. Knee Surgery & Related Research, 27, 43.

    Article  Google Scholar 

  17. 17.

    Lu, H., Chen, C., Xie, S., Tang, Y., & Qu, J. (2019). Tendon healing in bone tunnel after human anterior cruciate ligament reconstruction: A systematic review of histological results. Journal of Knee Surgery, 32, 454–462.

    PubMed  Article  Google Scholar 

  18. 18.

    Christensen, J. C., Goldfine, L. R., & West, H. S. (2013). The effects of early aggressive rehabilitation on outcomes after anterior cruciate ligament reconstruction using autologous hamstring tendon: A randomized clinical trial. Journal of Sport Rehabilitation, 22, 191–201.

    PubMed  Article  Google Scholar 

  19. 19.

    Gupta, P. K., Acharya, A., Mourya, A., & Ameriya, D. (2017). Role of accelerated rehabilitation versus standard rehabilitation following anterior cruciate ligament reconstruction using hamstring graft. Journal of Arthroscopy and Joint Surgery, 4, 89–93.

    Article  Google Scholar 

  20. 20.

    Murty, A. N., el Zebdeh, M. Y., & Ireland, J. (2001). Tibial tunnel enlargement following anterior cruciate reconstruction: Does post-operative immobilisation make a difference? The Knee, 8, 39–43.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Yu, J. K., & Paessler, H. H. (2005). Relationship between tunnel widening and different rehabilitation procedures after anterior cruciate ligament reconstruction with quadrupled hamstring tendons. Chinese Medical Journal (England), 118, 320–326.

    Google Scholar 

  22. 22.

    Janssen, R. P. A., van Melick, N., van Mourik, J. B. A., Reijman, M., & van Rhijn, L. W. (2018). ACL reconstruction with hamstring tendon autograft and accelerated brace-free rehabilitation: A systematic review of clinical outcomes. BMJ Open Sport & Exercise Medicine, 4, e000301.

    Article  Google Scholar 

  23. 23.

    Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151, 264–269.

    PubMed  Article  Google Scholar 

  24. 24.

    Grant, J. A. (2013). Updating recommendations for rehabilitation after ACL reconstruction: A review. Clinical Journal of Sport Medicine, 23, 501–502.

    PubMed  Article  Google Scholar 

  25. 25.

    Kruse, L. M., Gray, B., & Wright, R. W. (2012). Rehabilitation after anterior cruciate ligament reconstruction: A systematic review. The Journal of Bone and Joint Surgery American, 94, 1737–1748.

    CAS  Article  Google Scholar 

  26. 26.

    Sterne, J. A., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., & Eldridge, S. M. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. The BMJ, 366, l4898.

  27. 27.

    Sterne, J. A., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., Henry, D., Altman, D. G., Ansari, M. T., & Boutron, I. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. The BMJ, 355, i4919.

  28. 28.

    Hozo, S. P., Djulbegovic, B., & Hozo, I. (2005). Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology, 5, 13.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Higgins, J. P., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions. New York: John Wiley & Sons.

    Google Scholar 

  30. 30.

    Majima, T., Yasuda, K., Tago, H., Tanabe, Y., & Minami, A. (2002). Rehabilitation after hamstring anterior cruciate ligament reconstruction. Clinical Orthopaedics and Related Research, 397, 370–380.

    Article  Google Scholar 

  31. 31.

    Vadala, A., Iorio, R., De Carli, A., Argento, G., Di Sanzo, V., Conteduca, F., & Ferretti, A. (2007). The effect of accelerated, brace free, rehabilitation on bone tunnel enlargement after ACL reconstruction using hamstring tendons: A CT study. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 365–371.

    PubMed  Article  Google Scholar 

  32. 32.

    Zhu, W., Wang, D., Han, Y., Zhang, N., & Zeng, Y. (2013). Anterior cruciate ligament (ACL) autograft reconstruction with hamstring tendons: Clinical research among three rehabilitation procedures. European Journal of Orthopaedic Surgery & Traumatology, 23, 939–943.

    Article  Google Scholar 

  33. 33.

    Clatworthy, M., Annear, P., Bulow, J.-U., & Bartlett, R. (1999). Tunnel widening in anterior cruciate ligament reconstruction: A prospective evaluation of hamstring and patella tendon grafts. Knee Surgery, Sports Traumatology, Arthroscopy, 7, 138–145.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    L’Insalata, J. C., Klatt, B., Fu, F. H., & Harner, C. D. (1997). Tunnel expansion following anterior cruciate ligament reconstruction: A comparison of hamstring and patellar tendon autografts. Knee Surgery, Sports Traumatology, Arthroscopy, 5, 234–238.

    PubMed  Article  Google Scholar 

  35. 35.

    Webster, K., Feller, J., & Hameister, K. (2001). Bone tunnel enlargement following anterior cruciate ligament reconstruction: A randomised comparison of hamstring and patellar tendon grafts with 2-year follow-up. Knee Surgery, Sports Traumatology, Arthroscopy, 9, 86–91.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Höher, J., Livesay, G. A., Ma, C. B., Withrow, J. D., Fu, F. H., & Woo, S. L. (1999). Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 7, 215–219.

    PubMed  Article  Google Scholar 

  37. 37.

    Saccomanno, M. F., Shin, J. J., Mascarenhas, R., Haro, M., Verma, N. N., Cole, B. J., & Bach, B. R., Jr. (2014). Clinical and functional outcomes after anterior cruciate ligament reconstruction using cortical button fixation versus transfemoral suspensory fixation: A systematic review of randomized controlled trials. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30, 1491–1498.

    Article  Google Scholar 

  38. 38.

    Park, M., Lee, M. C., & Seong, S. (2001). A comparative study of the healing of tendon autograft and tendon-bone autograft using patellar tendon in rabbits. International Orthopaedics, 25, 35–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Aglietti, P., Giron, F., Losco, M., Cuomo, P., Ciardullo, A., & Mondanelli, N. (2010). Comparison between single-and double-bundle anterior cruciate ligament reconstruction: a prospective, randomized, single-blinded clinical trial. American Journal of Sports Medicine, 38, 25–34.

    Article  Google Scholar 

  40. 40.

    Trichine, F., Chouteau, J., Moyen, B., Bouzitouna, M., & Maza, R. (2014). Patellar tendon autograft reconstruction of the anterior cruciate ligament with and without lateral plasty in advanced-stage chronic laxity. A clinical, prospective, randomized, single-blind study using passive dynamic X-rays. The Knee, 21, 58–65.

    PubMed  Article  Google Scholar 

  41. 41.

    Harris, N. L., Indelicato, P. A., Bloomberg, M. S., Meister, K., & Wheeler, D. L. (2002). Radiographic and histologic analysis of the tibial tunnel after allograft anterior cruciate ligament reconstruction in goats. American Journal of Sports Medicine, 30, 368–373.

    Article  Google Scholar 

  42. 42.

    Chen, B., Sun, R., Wang, X., Shao, D., Lu, B., & Chen, J. (2007). The incidence and variation of tunnel enlargement after anterior cruciate ligament reconstruction. Chinese Journal of Surgery, 45, 78–81.

    Google Scholar 

  43. 43.

    Howell, S. M., Clark, J. A., & Blasier, R. D. (1991). Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation: A preliminary study. American Journal of Sports Medicine, 19, 42–47.

    CAS  Article  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Gyun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not require ethical approval because it is a meta-analysis of previous studies.

Informed consent

Not applicable for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.G., Kim, W.S., Kim, SG. et al. Accelerated Versus Non-accelerated Rehabilitation After Primary Anterior Cruciate Ligament Reconstruction Using Hamstring Autografts: A Systematic Review and Meta-analysis of Comparative Studies. JOIO (2021). https://doi.org/10.1007/s43465-021-00375-9

Download citation

Keywords

  • Knee
  • Anterior cruciate ligament reconstruction
  • Hamstring
  • Accelerated rehabilitation
  • Meta-analysis