Influence of Brassica campestris and Galega officinalis on Antioxidant Activity of Bee Pollen


The presence of polyphenol compounds in bee pollen differs with the floral species that comprise the pollen. These polyphenols are thus responsible for the free radical scavenging ability that the pollen exhibits. To correlate the botanical origin with the polyphenol content of Chilean bee pollen, samples were extracted in methanol using ultrasound-assisted extraction. Total polyphenol content, total flavonoid content, and antioxidant capacity were determined in all samples along with the polyphenol HPLC profile. According to the melissopalynological analysis, samples were either monofloral or multifloral bee pollen, with total polyphenol content between 7.7 and 22 mg eq gallic acid/g of bee pollen and total flavonoid content between 76 and 296 mg quercetin/kg pollen. All extracts showed an antioxidative activity for the ABTS radical of 23.9 to 43 mg eq trolox/g of bee pollen, and lower values for DPPH scavenging capacity (0.98 to 4.74 mg eq trolox/g of bee pollen). Coumaric acid and caffeic acid were present in all bee pollen, but different polyphenol profiles were observed among the samples. Results show a high correlation between the properties exhibited and the relative amount of pollen from Brassica campestris and Galega officinalis in the sample, indicating a dependence of the bioactivity of bee pollen with the botanical origin and chemical composition.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Anjos O, Fernandes R, Cardoso SM, Delgado T, Farinha N, Paula V, Estevinho LM, Carpes ST (2019) Bee pollen as a natural antioxidant source to prevent lipid oxidation in black pudding. LWT Food Sci Technol 111:869–875.

    CAS  Article  Google Scholar 

  2. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436.

    CAS  Article  Google Scholar 

  3. Bonvehi JS, Torrentó MS, Lorente EC (2001) Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J Agric Food Chem 49:1848–1853.

    CAS  Article  Google Scholar 

  4. Bridi R, Atala E, Pizarro NP, Montenegro G (2018) Honeybee pollen load: phenolic composition and antimicrobial activity and antioxidant capacity. J Nat Prod 82:559–565.

    CAS  Article  Google Scholar 

  5. Da Porto C, Porretto E,  Decorti D, (2013) Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason Sonochem 20 (4):1076–1080.

  6. Denisow B, Denisow-Pietrzyk M (2016) Biological and therapeutic properties of bee pollen: a review. J Sci Food Agric 96:4303–4309.

    CAS  Article  PubMed  Google Scholar 

  7. El Atki Y, Aouam I, El Kamari F, Taroq A, Lyoussi B, Taleb M, Abdellaoui A (2019) Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Mater Today Proc 13:777–783.

    CAS  Article  Google Scholar 

  8. Ferreira PS, Victorelli FD, Fonseca-Santos B, Chorilli M (2019) A review of analytical methods for p-coumaric acid in plant-based products, beverages, and biological matrices. Crit Rev Anal Chem 49:21–31.

    CAS  Article  Google Scholar 

  9. Giordano A, Fuentes-Barros G, Castro-Saavedra S, González-Cooper A, Suárez-Rozas C, Salas-Norambuena J, Acevedo-Fuentes W, Leyton F, Tirapegui C, Echeverría J, Claros S, Cassels BK (2019) Variation of secondary metabolites in the aerial biomass of Cryptocarya alba. Nat Prod Commun 14:1934578X1985625.

    Article  Google Scholar 

  10. LeBlanc BW, Davis OK, Boue S, DeLucca A, Deeby T (2009) Antioxidant activity of Sonoran Desert bee pollen. Food Chem 115:1299–1305.

    CAS  Article  Google Scholar 

  11. Montenegro G, Pizarro R, Mejías E, Rodríguez S (2013) Evaluación biológica de polen apícola de plantas nativas de Chile. Phyton (B Aires) 82:7–14

    Google Scholar 

  12. Nascimento AMCB, Luz GE (2018) Bee pollen properties: uses and potential pharmacological applications-a review. J Anal Pharm Res 7:513–515.

    Article  Google Scholar 

  13. O’Coinceanainn M, Astill C, Baderschneider B (2003) Coordination of aluminium with purpurogallin and theaflavin digallate. J Inorg Biochem 96:463–468.

  14. Paixão N, Perestrelo R, Marques JC, Câmara JS (2007) Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem 105:204–214.

    CAS  Article  Google Scholar 

  15. Ramón-Sierra J, Peraza-López E, Rodríguez-Borges R, Yam-Puc A, Madera-Santana T, Ortiz-Vásquez E (2019) Partial characterization of ethanolic extract of Melipona beecheii propolis and in vitro evaluation of its antifungal activity. Rev Bras Farmacogn 29:319–324.

    CAS  Article  Google Scholar 

  16. Rodriguez-Gonzalez I, Ortega-Toro R, Diaz C (2018) Influence of microwave- and ultrasound-assisted extraction on bioactive compounds from pollen. Contemp Eng Sci 11:1669–1676.

    CAS  Article  Google Scholar 

  17. Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N, (2013) Potential applications of antioxidants – A review. J Pharm Res 7:828–835.

  18. Velásquez P, Rodríguez K, Retamal M, Giordano A, Valenzuela L, Montenegro G (2017) Relation between composition, antioxidant and antibacterial activities and botanical origin of multi-floral bee pollen. J Appl Bot Food Qual 90:306–314.

    Article  Google Scholar 

  19. Velásquez P, Montenegro G, Giordano A, Retamal M, Valenzuela LM (2019) Bioactivities of phenolic blend extracts from Chilean honey and bee pollen. CyTA-J Food 17:754–762.

    CAS  Article  Google Scholar 

  20. Wu W, Wang K, Qiao J, Dong J, Li Z, Zhang H (2018) Improving nutrient release of wall-disrupted bee pollen with a combination of ultrasonication and high shear technique. J Sci Food Agric 99:564–575.

    CAS  Article  PubMed  Google Scholar 

  21. Yang Y, Zhang J, Zhou Q, Wang L, Huang W, Wang R (2019) Effect of ultrasonic and ball milling treatment on cell wall, nutrients and antioxidant capacity of rose (Rosa rugosa) bee pollen, as well as identification of bioactive components. J Sci Food Agric 99:5350–5357.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors acknowledged Prof. Miguel Gómez for botanical origin analysis assistance.


This work received financial support from Project UC-VRI No. 13 /2013; CONICYT Beca Doctorado Nacional 21110822; PAI-CONICYT Tesis de Doctorado en la Empresa 781412002; and FONDEQUIP under Grant EQM 130032 and EQM160042.

Author information




EM executed experimental work, analysis of data and drafted the manuscript. KR contributed to antioxidant analysis. PV performed statistical analysis and discussion of data. GM collected pollen samples, performed botanical origin and revised the final manuscript. AG designed the study, supervised experimental work and reviewed final manuscript.

Corresponding author

Correspondence to Ady Giordano.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material


(DOCX 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz, E., Velásquez, P., Rodriguez, K. et al. Influence of Brassica campestris and Galega officinalis on Antioxidant Activity of Bee Pollen. Rev. Bras. Farmacogn. 30, 444–449 (2020).

Download citation


  • Bee pollen
  • Ultrasonic-assisted extraction
  • Botanical origin
  • Phenolics
  • Floral origin