Pruritus in psoriasis and atopic dermatitis: current treatments and new perspectives

Abstract

Psoriasis and atopic dermatitis (AD) are two common chronic inflammatory skin diseases. Although showing different etiology and clinical manifestations, patients with either disease suffer from low health-related quality of life due to pruritus (dermal itch). Recent studies have revealed that more than 85% of psoriasis patients suffer from pruritus, and it is also the dominating symptom of AD. However, as this is a non-life treating symptom, it was partly neglected for years. In this review, we focus on current findings as well as the impact and potential treatments of pruritus in these two skin diseases. We first distinguish the type of itch based on involved mediators and modulators. This clear delineation between the types of pruritus based on involved receptors and pathways allows for precise treatment. In addition, insights into recent clinical trials aimed to alleviate pruritus by targeting these receptors are presented. We also report about novel advances in combinatorial treatments, dedicated to the type of pruritus linked to a causal disease. Altogether, we suggest that only a focused treatment tailored to the primary disease and the underlying molecular signals will provide fast and sustained relief of pruritus associated with psoriasis or AD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AD:

Atopic dermatitis

CGRP:

Calcitonin gene-related peptide

GPCR:

G protein-coupled receptor

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

IL:

Interleukin

ILR:

Interleukin receptor

ME:

Mediator

MO:

Modulator

NK1R:

Neurokinin 1 receptor/substance P receptor/tachykinin receptor 1

OPRK:

κ-Opioid receptor

OPRM:

μ-Opioid receptor

TrkA:

Tropomyosin receptor kinase A

TRPA:

Transient receptor potential cation channel, subfamily A

TRPV:

Transient receptor potential cation channel subfamily V

TSLP:

Thymic stromal lymphopoietin

TSLPR:

Thymic stromal lymphopoietin receptor

References

  1. 1.

    Chen XJ, Sun YG. Central circuit mechanisms of itch. Nat Commun. 2020;11:3052.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Twycross R, Greaves MW, Handwerker H, Jones EA, Libretto SE, Szepietowski JC, et al. Itch: scratching more than the surface. QJM. 2003;96:7–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Ständer S, Weisshaar E, Mettang T, Szepietowski JC, Carstens E, Ikoma A, et al. Clinical classification of itch: a position paper of the International Forum for the Study of Itch. Acta Derm Venereol. 2007;87:291–4.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Ständer S. Classification of itch. Itch-management in clinical practice. Berlin: Karger Publishers; 2016. p. 1–4.

    Google Scholar 

  5. 5.

    Dong X, Dong X. Peripheral and central mechanisms of itch. Neuron. 2018;98:482–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Schmelz M. Itch processing in the skin. Front Med. 2019;6:167.

    Article  Google Scholar 

  7. 7.

    Garibyan L, Rheingold CG, Lerner EA. Understanding the pathophysiology of itch. Dermatol Ther. 2013;26:84–91.

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Misery L, Brenaut E, Le Garrec R, Abasq C, Genestet S, Marcorelles P, et al. Neuropathic pruritus. Nat Rev Neurol. 2014;10:408–16.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Oaklander AL. Neuropathic itch. Semin Cutan Med Surg. 2011;30:87–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Stumpf A, Ständer S. Neuropathic itch: diagnosis and management. Dermatol Ther. 2013;26:104–9.

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Yosipovitch G, Greaves MW, Schmelz M. Itch. Lancet. 2003;361:690–4.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Yosipovitch G, Samuel LS. Neuropathic and psychogenic itch. Dermatol Ther. 2008;21:32–41.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Tivoli YA, Rubenstein RM. Pruritus: an updated look at an old problem. J Clin Aesthet Dermatol. 2009;2:30–6.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yosipovitch G. Assessment of itch: more to be learned and improvements to be made. J Investig Dermatol. 2003;121:xiv–xv.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Weissler A. Atopic dermatitis—a new dawn. Physician Assist Clin. 2016;1:661–82.

    Article  Google Scholar 

  16. 16.

    Halvorsen JA, Dalgard F, Thoresen M, Thoresen M, Bjertness E, Lien L. Itch and mental distress: a cross-sectional study among late adolescents. Acta Derm Venereol. 2009;89:39–44.

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Dalgard F, Svensson A, Holm JO, Sundby J. Self-reported skin morbidity among adults: associations with quality of life and general health in a Norwegian survey. J Investig Dermatol Symp Proc. 2004;9:120–5.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Zachariae R, Lei U, Haedersdal M, Zachariae C. Itch severity and quality of life in patients with pruritus: preliminary validity of a Danish adaptation of the itch severity scale. Acta Derm Venereol. 2012;92:508–14.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Na CH, Chung J, Simpson EL. Quality of life and disease impact of atopic dermatitis and psoriasis on children and their families. Children. 2019;6:133.

    PubMed Central  Article  Google Scholar 

  20. 20.

    Yosipovitch G, Papoiu AD. What causes itch in atopic dermatitis? Curr Allergy Asthma Rep. 2008;8:306–11.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Yosipovitch G, Rosen JD, Hashimoto T. Itch: from mechanism to (novel) therapeutic approaches. J Allergy Clin Immunol. 2018;142:1375–90.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Siegfried EC, Hebert AA. Diagnosis of atopic dermatitis: mimics, overlaps, and complications. J Clin Med. 2015;4:884–917.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Myers MI, Peltier AC, Li J. Evaluating dermal myelinated nerve fibers in skin biopsy. Muscle Nerve. 2013;47:1–11.

    PubMed  Article  Google Scholar 

  24. 24.

    Azimi E, Xia J, Lerner EA. Peripheral mechanisms of itch. Itch-management in clinical practice. Berlin: Karger Publishers; 2016. p. 18–23.

    Google Scholar 

  25. 25.

    Schmelz M. Itch and pain. Neurosci Biobehav Rev. 2010;34:171–6.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjörk HE. Specific C-receptors for itch in human skin. J Neurosci. 1997;17:8003.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Wang F, Kim BS. Itch: a paradigm of neuroimmune crosstalk. Immunity. 2020;52:753–66.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Tominaga M, Takamori K. Itch and nerve fibers with special reference to atopic dermatitis: therapeutic implications. J Dermatol. 2014;41:205–12.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Sun S, Dong X. Trp channels and itch. Semin Immunopathol. 2016;38:293–307.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Ringkamp M, Schepers RJ, Shimada SG, Johanek LM, Hartke TV, Borzan J, et al. A role for nociceptive, myelinated nerve fibers in itch sensation. J Neurosci. 2011;31:14841–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Potenzieri C, Undem BJ. Basic mechanisms of itch. Clin Exp Allergy. 2012;42:8–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18:145–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Dhand A, Aminoff MJ. The neurology of itch. Brain. 2014;137:313–22.

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Lee JS, Han JS, Lee K, Bang J, Lee H. The peripheral and central mechanisms underlying itch. BMB Rep. 2016;49:474.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Ikoma A, Cevikbas F, Kempkes C, Steinhoff M. Anatomy and neurophysiology of pruritus. Semin Cutan Med Surg. NIH Public Access; 2011;30:64–70.

  36. 36.

    Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in understanding the initial steps of pruritoceptive itch: how the itch hits the switch. Int J Mol Sci. 2020;21.

  37. 37.

    Prignano F, Ricceri F, Pescitelli L, Lotti T. Itch in psoriasis: epidemiology, clinical aspects and treatment options. Clin Cosmet Investig Dermatol. 2009;2:9–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Christopher E, Griffiths M, van de Kerkhof P, Czarnecka-operacz M. Psoriasis and atopic dermatitis. Dermatol Ther. 2017;7:31.

    Article  Google Scholar 

  39. 39.

    Chovatiya R, Silverberg JI. Pathophysiology of atopic dermatitis and psoriasis: implications for management in children. Children. 2019;6:108.

    PubMed Central  Article  Google Scholar 

  40. 40.

    Nattkemper LA, Tey HL, Valdes-Rodriguez R, Lee H, Mollanazar NK, Albornoz C, et al. The genetics of chronic itch: gene expression in the skin of patients with atopic dermatitis and psoriasis with severe itch. J Investig Dermatol. 2018;138:1311–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Suárez-Fariñas M, Ungar B, Correa da Rosa J, Ewald DA, Rozenblit M, Gonzalez J, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135:1218–27.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. 42.

    Jabbari A, Suárez-Fariñas M, Dewell S, Krueger JG. Transcriptional profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed genes. J Investig Dermatol. 2012;132:246–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Sarkar MK, Kaplan N, Tsoi LC, Xing X, Liang Y, Swindell WR, et al. Endogenous glucocorticoid deficiency in psoriasis promotes inflammation and abnormal differentiation. J Investig Dermatol. 2017;137:1474–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Han X, Nieman MT. The domino effect triggered by the tethered ligand of the protease activated receptors. Thromb Res. 2020;196:87–98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Patel KN, Dong X. An itch to be scratched. Neuron. 2010;68:334–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Takahashi S, Ishida A, Kubo A, Kawasaki H, Ochiai S, Nakayama M, et al. Homeostatic pruning and activity of epidermal nerves are dysregulated in barrier-impaired skin during chronic itch development. Sci Rep. 2019;9:1–15.

    Article  CAS  Google Scholar 

  47. 47.

    Han L, Dong X. Itch mechanisms and circuits. Annu Rev Biophys. 2014;43:331–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Rendon A, Schakel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20.

  49. 49.

    Dopytalska K, Sobolewski P, Błaszczak A, Szymańska E, Walecka I. Psoriasis in special localizations. Reumatologia. 2018;56:392–8.

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Kopel E, Levi A, Harari M, Ruzicka T, Ingber A. Effect of the Dead Sea climatotherapy for psoriasis on quality of life. Isr Med Assoc J. 2013;15:99–102.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4:a015354.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, et al. Psoriasis. Nat Rev Dis Primers. 2016;2:16082.

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Sarac G, Koca TT, Baglan T. A brief summary of clinical types of psoriasis. North Clin Istanb. 2016;3:79–82.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Szepietowski J, Reich A. Pruritus in psoriasis: an update. Eur J Pain. 2016;20:41–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Yosipovitch G, Goon A, Wee J, Chan YH, Goh CL. The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis. Br J Dermatol. 2000;143:969–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Domagala A, Szepietowski J, Reich A. Antihistamines in the treatment of pruritus in psoriasis. Postep Dermatol Alergol. 2017;34:457–63.

    Article  Google Scholar 

  58. 58.

    Wiśnicka B, Szepietowski J, Reich A, Orda A. Histamine, substance P and calcitonin gene-related peptide plasma concentration and pruritus in patients suffering from psoriasis. Dermatol Psychosom/Dermatologie und Psychosomatik. 2004;5:73–8.

    Article  Google Scholar 

  59. 59.

    Saraceno R, Kleyn CE, Terenghi G, Griffiths CE. The role of neuropeptides in psoriasis. Br J Dermatol. 2006;155:876–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Reich A, Szepietowski JC. Mediators of pruritus in psoriasis. Mediat Inflamm. 2007;2007:64727.

    Article  CAS  Google Scholar 

  61. 61.

    Choueiri TK, Kaelin WG. Targeting the HIF2–VEGF axis in renal cell carcinoma. Nat Med. 2020;26:1519–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Krause K, Krull C, Kessler B, Lange-Asschenfeldt B, Maurer M, Metz M. Effective control of recalcitrant pruritus by bevacizumab: a possible role for vascular endothelial growth factor in chronic itch? Acta Derm Venereol. 2013;93:175–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Gerkowicz A. Aumsauapautzaudk. The role of VEGF in psoriasis: an update. 2018;24:134–40.

  64. 64.

    Marina ME, Roman II, Constantin AM, Mihu CM, Tătaru AD. VEGF involvement in psoriasis. Clujul Med. 2015;88:247–52.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Buckland J. Anti-VEGF antibody therapy for psoriasis? Nat Rev Rheumatol. 2010;6:119.

    CAS  Article  Google Scholar 

  66. 66.

    Weidemann AK, Crawshaw AA, Byrne E, Young HS. Vascular endothelial growth factor inhibitors: investigational therapies for the treatment of psoriasis. Clin Cosmet Investig Dermatol. 2013;6:233–44.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Chang SE, Han SS, Jung HJ, Choi JH. Neuropeptides and their receptors in psoriatic skin in relation to pruritus. Br J Dermatol. 2007;156:1272–7.

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Nakamura M, Toyoda M, Morohashi M. Pruritogenic mediators in psoriasis vulgaris: comparative evaluation of itch-associated cutaneous factors. Br J Dermatol. 2003;149:718–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Remröd C, Lonne-Rahm S, Nordlind K. Study of substance P and its receptor neurokinin-1 in psoriasis and their relation to chronic stress and pruritus. Arch Dermatol Res. 2007;299:85–91.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  70. 70.

    Choi JC, Yang JH, Chang SE, Choi J. Pruritus and nerve growth factor in psoriasis. Korean J Dermatol. 2005;43:769–73.

    Google Scholar 

  71. 71.

    Taneda K, Tominaga M, Negi O, Tengara S, Kamo A, Ogawa H, et al. Evaluation of epidermal nerve density and opioid receptor levels in psoriatic itch. Br J Dermatol. 2011;165:277–84.

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Kupczyk P, Reich A, Hołysz M, Gajda M, Wysokińska E, Kobuszewska A, et al. Opioid receptors in psoriatic skin: relationship with itch. Acta Derm Venereol. 2017;97:564–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Belasco J, Louie JS, Gulati N, Wei N, Nograles K, Fuentes-Duculan J, et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 2015;67:934–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Investig Dermatol. 2013;133:17–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Moynes DM, Vanner SJ, Lomax AE. Participation of interleukin 17A in neuroimmune interactions. Brain Behav Immun. 2014;41:1–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Kimball AB, Luger T, Gottlieb A, Puig L, Kaufmann R, Burge R, et al. Long-term impact of ixekizumab on psoriasis itch severity: results from a phase III clinical trial and long-term extension. Acta Derm Venereol. 2018;98:98–102.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Elewski B, Alexis AF, Lebwohl M, Stein Gold L, Pariser D, Del Rosso J, et al. Itch: an under-recognized problem in psoriasis. J Eur Acad Dermatol Venereol. 2019;33:1465–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Menter A, Korman NJ, Elmets CA, Feldman SR, Gelfand JM, Gordon KB, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 5. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy. J Am Acad Dermatol. 2010;62:114–35.

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Théréné C, Brenaut E, Barnetche T, Misery L. Efficacy of systemic treatments of psoriasis on pruritus: a systemic literature review and meta-analysis. J Investig Dermatol. 2018;138:38–45.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  80. 80.

    Pariser DM, Bagel J, Lebwohl M, Yosipovitch G, Chien E, Spellman MC. Serlopitant for psoriatic pruritus: a phase 2 randomized, double-blind, placebo-controlled clinical trial. J Am Acad Dermatol. 2020.

  81. 81.

    Pojawa-Gołąb M, Jaworecka K, Reich A. NK-1 receptor antagonists and pruritus: review of current literature. Dermatol Ther. 2019:1–15.

  82. 82.

    Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Sharman JL, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res. 2020;48:D1006–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Inan S, Torres-Huerta A, Jensen LE, Dun NJ, Cowan A. Nalbuphine, a kappa opioid receptor agonist and mu opioid receptor antagonist attenuates pruritus, decreases IL-31, and increases IL-10 in mice with contact dermatitis. Eur J Pharmacol. 2019;864:172702.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KC. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:1–18.

    Article  Google Scholar 

  85. 85.

    Giavina-Bianchi M, Giavina-Bianchi P. Systemic treatment for severe atopic dermatitis. Arch Immunol Ther Exp (Warsz). 2019;67:69–78.

    CAS  Article  Google Scholar 

  86. 86.

    DaVeiga SP. Epidemiology of atopic dermatitis: a review. Allergy Asthma Proc. 2012;33:227–34.

  87. 87.

    Odhiambo JA, Williams HC, Clayton TO, Robertson CF, Asher MI, Group IPTS. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009;124(1251):1258e23.

    Google Scholar 

  88. 88.

    Adler-Cohen C, Czarnowicki T, Dreiher J, Ruzicka T, Ingber A, Harari M. Climatotherapy at the Dead Sea: an effective treatment modality for atopic dermatitis with significant positive impact on quality of life. Dermatitis. 2012;23:75–80.

    PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Marsakova A, Kudish A, Gkalpakiotis S, Jahn I, Arenberger P, Harari M. Dead Sea climatotherapy versus topical steroid treatment for atopic dermatitis children: long-term follow-up study. J Dermatol Treat. 2019:1–5.

  90. 90.

    Williams H, Stewart A, von Mutius E, Cookson W, Anderson HR, International Study of A, et al. Is eczema really on the increase worldwide? J Allergy Clin Immunol. 2008;121:947–954e15.

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Abuabara K, Yu AM, Okhovat JP, Allen IE, Langan SM. The prevalence of atopic dermatitis beyond childhood: a systematic review and meta-analysis of longitudinal studies. Allergy. 2018;73:696–704.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66(Suppl 1):8–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Leung DY. Role of IgE in atopic dermatitis. Curr Opin Immunol. 1993;5:956–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396:345–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Fiset P-O, Leung DY, Hamid Q. Immunopathology of atopic dermatitis. J Allergy Clin Immunol. 2006;118:287.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Hulshof L, Overbeek SA, Wyllie AL, Chu MLJ, Bogaert D, de Jager W, et al. Exploring immune development in infants with moderate to severe atopic dermatitis. Front Immunol. 2018;9:630.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. 97.

    Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155:285–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Järvikallio A, Harvima IT, Naukkarinen A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res. 2003;295:2–7.

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Hodeib A, El-Samad ZA, Hanafy H, El-Latief AA, El-Bendary A, Abu-Raya A. Nerve growth factor, neuropeptides and cutaneous nerves in atopic dermatitis. Indian J Dermatol. 2010;55:135–9.

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Ding W, Stohl LL, Wagner JA, Granstein RD. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J Immunol. 2008;181:6020.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Mehta D, Granstein RD. Immunoregulatory effects of neuropeptides on endothelial cells: relevance to dermatological disorders. Dermatology. 2019;235:175–86.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Rogoz K, Andersen HH, Lagerström MC, Kullander K. Multimodal use of calcitonin gene-related peptide and substance P in itch and acute pain uncovered by the elimination of vesicular glutamate transporter 2 from transient receptor potential cation channel subfamily V member 1 neurons. J Neurosci. 2014;34:14055.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Ostlere L, Cowen T, Rustin M. Neuropeptides in the skin of patients with atopic dermatitis. Clin Exp Dermatol. 1995;20:462–7.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Morren M-A, Przybilla B, Bamelis M, Heykants B, Reynaers A, Degreef H. Atopic dermatitis: triggering factors. J Am Acad Dermatol. 1994;31:467–73.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Patel T, Yosipovitch G. Therapy of pruritus. Expert Opin Pharmacother. 2010;11:1673–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Pavlis J, Yosipovitch G. Management of itch in atopic dermatitis. Am J Clin Dermatol. 2018;19:319–32.

    PubMed  Article  Google Scholar 

  107. 107.

    Ständer S, Yosipovitch G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Br J Dermatol. 2019;181:932–8.

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23:6176–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Li J, Han X, Knauss EA, Woulfe DS, Nieman MT. GPCRs in thromboinflammation and hemostasis. In: GPCRs. Elsevier, Amsterdam; 2020. p. 393–414.

  110. 110.

    Dvorak M, Watkinson A, McGlone F, Rukwied R. Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin. Inflamm Res. 2003;52:238–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Eberlein B, Eicke C, Reinhardt H-W, Ring J. Adjuvant treatment of atopic eczema: assessment of an emollient containing N-palmitoylethanolamine (ATOPA study). J Eur Acad Dermatol Venereol. 2008;22:73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Pereira MP, Mittal A, Ständer S. Current treatment strategies in refractory chronic pruritus. Curr Opin Pharmacol. 2019;46:1–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Yu S, Li Y, Zhou Y, Follansbee T, Hwang ST. Immune mediators and therapies for pruritus in atopic dermatitis and psoriasis. J Cutan Immunol Allergy. 2019;2:4–14.

    Article  Google Scholar 

  114. 114.

    Frampton JE, Blair HA. Dupilumab: a review in moderate-to-severe atopic dermatitis. Am J Clin Dermatol. 2018;19:617–24.

    PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Davis JD, Bansal A, Hassman D, Akinlade B, Li M, Li Z, et al. Evaluation of potential disease-mediated drug–drug interaction in patients with moderate-to-severe atopic dermatitis receiving dupilumab. Clin Pharmacol Ther. 2018;104:1146–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Kabashima K, Furue M, Hanifin JM, Pulka G, Wollenberg A, Galus R, et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis: randomized, phase II, long-term extension study. J Allergy Clin Immunol. 2018;142(1121–30):e7.

    Google Scholar 

  117. 117.

    Kabashima K, Matsumura T, Komazaki H, Kawashima M. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N Engl J Med. 2020;383:141–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Boguniewicz M. Biologics for atopic dermatitis. Immunol Allergy Clin N Am. 2020;40:593–607.

    Article  Google Scholar 

  119. 119.

    Chen Y-L, Gutowska-Owsiak D, Hardman CS, Westmoreland M, MacKenzie T, Cifuentes L, et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med. 2019;11:eaax2945.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Cevikbas F, Steinhoff M. IL-33: a novel danger signal system in atopic dermatitis. J Investig Dermatol. 2012;132:1326–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Pietka W, Sundnes O, Hammarström C, Zucknick M, Khnykin D, Haraldsen G. Lack of interleukin-33 and its receptor does not prevent calcipotriol-induced atopic dermatitis-like inflammation in mice. Sci Rep. 2020;10:6451.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Du L, Hu X, Yang W, Yasheng H, Liu S, Zhang W, et al. Spinal IL‐33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2‐STAT3 cascade. Glia. Glia. 2019;67:1680–1693.

  123. 123.

    Rinaldi G. The itch-scratch cycle: a review of the mechanisms. Dermatol Pract Concept. 2019;9:90–7.

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;414:454–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Kim HS, Yosipovitch G. The skin microbiota and itch: is there a link? J Clin Med. 2020;9.

  126. 126.

    Fluhr JW, Elias PM. Stratum corneum pH: formation and function of the ‘acid mantle’. Exog Dermatol. 2002;1:163–75.

    CAS  Article  Google Scholar 

  127. 127.

    Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25:370–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Brandwein M, Fuks G, Israel A, Sabbah F, Hodak E, Szitenberg A, et al. Skin microbiome compositional changes in atopic dermatitis accompany Dead Sea climatotherapy. Photochem Photobiol. 2019;95:1446–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Panther DJ, Jacob SE. The importance of acidification in atopic eczema: an underexplored avenue for treatment. J Clin Med. 2015;4:970–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Psomadakis CE, Han G. New and emerging topical therapies for psoriasis and atopic dermatitis. J Clin Aesthet Dermatol. 2019;12:28–34.

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Bigliardi PL. Role of Skin pH in Psoriasis. Curr Probl Dermatol. 2018;54:108–14.

  132. 132.

    Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Investig Dermatol. 2011;131:2026–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Gooderham MJ, Forman SB, Bissonnette R, Beebe JS, Zhang W, Banfield C, et al. Efficacy and safety of oral Janus kinase 1 inhibitor abrocitinib for patients with atopic dermatitis: a phase 2 randomized clinical trial. JAMA Dermatol. 2019;155:1371–9.

    PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Inui S. Nalfurafine hydrochloride to treat pruritus: a review. Clin Cosmet Investig Dermatol. 2015;8:249.

    PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Ständer S, Reinhardt H, Luger T. Topische cannabinoidagonisten. Der Hautarzt. 2006;57:801–7.

    Article  Google Scholar 

  136. 136.

    Avila C, Massick S, Kaffenberger BH, Kwatra SG, Bechtel M. Cannabinoids for the treatment of chronic pruritus: a review. J Am Acad Dermatol. 2020;82:1205–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Takahashi N, Tominaga M, Kamata Y, Umehara Y, Matsuda H, Suga Y, et al. Involvement of opioid systems in itch-related behavior of imiquimod-induced psoriasis-like dermatitis model. J Dermatol Sci. 2017;86:e9.

    Article  Google Scholar 

  138. 138.

    Lockington PF, Fa’aea P. Subcutaneous naloxone for the prevention of intrathecal morphine induced pruritus in elective Caesarean delivery. Anaesthesia. 2007;62:672–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Lee J, Shin JU, Noh S, Park CO, Lee KH. Clinical efficacy and safety of naltrexone combination therapy in older patients with severe pruritus. Ann Dermatol. 2016;28:159–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Nygaard U, Hvid M, Johansen C, Buchner M, Fölster-Holst R, Deleuran M, et al. TSLP, IL-31, IL-33 and sST 2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. J Eur Acad Dermatol Venereol. 2016;30:1930–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Renz H, Jujo K, Bradley KL, Domenico J, Gelfand EW, Leung DY. Enhanced IL-4 production and IL-4 receptor expression in atopic dermatitis and their modulation by interferon-gamma. J Investig Dermatol. 1992;99:403–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Le Floc’h A, Allinne J, Nagashima K, Scott G, Birchard D, Asrat S, et al. Dual blockade of IL‐4 and IL‐13 with dupilumab, an IL‐4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy. 2020;75:1188.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Kariyawasam HH, James LK, Gane SB. Dupilumab: clinical efficacy of blocking IL-4/IL-13 signalling in chronic rhinosinusitis with nasal polyps. Drug Des Dev Ther. 2020;14:1757.

    CAS  Article  Google Scholar 

  144. 144.

    Bieber T. Interleukin-13: targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020;75:54–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

SK is supported by Israel Ministry of Science and Technology, Regional R&D Centers, Scholarship number 3-16752.

Author information

Affiliations

Authors

Contributions

SK and LH conceptualized, wrote, and illustrated the manuscript. GC, MH and AG revised and consulted on the manuscript.

Corresponding author

Correspondence to Shirin Kahremany.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kahremany, S., Hofmann, L., Harari, M. et al. Pruritus in psoriasis and atopic dermatitis: current treatments and new perspectives. Pharmacol. Rep (2021). https://doi.org/10.1007/s43440-020-00206-y

Download citation

Keywords

  • Psoriasis
  • Atopic dermatitis
  • Pruritus
  • Itch
  • Receptors
  • Mediator
  • Modulator
  • Treatment