Role of proteinase-activated receptors 1 and 2 in nonsteroidal anti-inflammatory drug enteropathy

Abstract

Background

The use of nonsteroidal anti-inflammatory drugs (NSAIDs) can promote lower gastrointestinal detrimental effects. Proteinase-activated receptors 1 (PAR1) and PAR2 are involved in the pathophysiology of several digestive disorders. This study examines the contribution of PAR1 and PAR2 in NSAID-induced small intestinal injury, and to investigate the underlying mechanisms.

Methods

Male Wistar rats (40 weeks old) were treated with indomethacin (1.5 mg/kg BID) for 14 days. Subgroups of animals were treated intraperitoneally with TFFLR-NH2 (PAR1 agonist), AC55541 (PAR2 agonist), SCH79797 (PAR1 antagonist) or ENMD-1068 (PAR2 antagonist). After treatments, blood and feces were collected for the assessment of hemoglobin and calprotectin, respectively. The ileum was processed for the evaluation of myeloperoxidase (MPO), malondialdehyde (MDA), and the protein expression of occludin and activated caspase-3.

Results

Indomethacin elicited a significant intestinal damage, associated with a decrease in blood hemoglobin and an increase in tissue MPO, MDA and fecal calprotectin. In this setting, either the PAR1 agonist or PAR2 antagonist counteracted these changes, with the exception of MDA, which was unaffected. By contrast, the PAR1 antagonist or PAR2 agonist did not exert any effect on all the parameters. Indomethacin also decreased occludin and increased activated caspase-3 expression in ileal tissues. The PAR1 agonist or PAR2 antagonist prevented the reduced occludin expression, while the PAR2 antagonist also decreased the levels of activated caspase-3.

Conclusions

PAR2 is involved in the pathogenesis of indomethacin enteropathy, through pro-inflammatory mechanisms and an impairment of the intestinal epithelial barrier. PAR1 activation and PAR2 inhibition could represent suitable strategies for the prevention of NSAID enteropathy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal anti-inflammatory therapy: a journey toward safety. Med Res Rev. 2017;37(4):802–59.

    PubMed  Google Scholar 

  2. 2.

    Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018;9(1):143–50.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Walker C. Are all oral COX-2 selective inhibitors the same? A consideration of celecoxib, etoricoxib, and diclofenac. Int J Rheumatol. 2019;2019:8635073.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Wang X, Tian HJ, Yang HK, Wanyan P, Peng YJ. Meta-analysis: cyclooxygenase-2 inhibitors are no better than nonselective nonsteroidal anti-inflammatory drugs with proton pump inhibitors in regard to gastrointestinal adverse events in osteoarthritis and rheumatoid arthritis. Eur J Gastroenterol Hepatol. 2011;23(10):876–80.

    CAS  PubMed  Google Scholar 

  5. 5.

    Mallen SR, Essex MN, Zhang R. Gastrointestinal tolerability of NSAIDs in elderly patients: a pooled analysis of 21 randomized clinical trials with celecoxib and nonselective NSAIDs. Curr Med Res Opin. 2011;27(7):1359–66.

    CAS  PubMed  Google Scholar 

  6. 6.

    Hawkey CJ. NSAIDs, coxibs, and the intestine. J Cardiovasc Pharmacol. 2006;47(Suppl 1):S72–S7575.

    CAS  PubMed  Google Scholar 

  7. 7.

    Svistunov AA, Osadchuk MA, Kireeva NV, Hudarova AA, Achkasov EE. NSAID-induced enteropathy: the current state of the problem. Ter Arkh. 2018;90(8):95–100.

    CAS  PubMed  Google Scholar 

  8. 8.

    Tai FWD, McAlindon ME. NSAIDs and the small bowel. Curr Opin Gastroenterol. 2018;34(3):175–82.

    CAS  PubMed  Google Scholar 

  9. 9.

    Scarpignato C, Hunt RH. Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin N Am. 2010;39(3):433–64.

    Google Scholar 

  10. 10.

    Syer SD, Blackler RW, Martin R, de Palma G, Rossi L, Verdu E, et al. NSAID enteropathy and bacteria: a complicated relationship. J Gastroenterol. 2015;50(4):387–93.

    CAS  PubMed  Google Scholar 

  11. 11.

    Wallace JL. Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J Gastroenterol. 2013;19(12):1861–76.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. 2018;154(3):500–14.

    CAS  PubMed  Google Scholar 

  13. 13.

    Bueno L, Fioramonti J. Protease-activated receptor 2 and gut permeability: a review. Neurogastroenterol Motil. 2008;20(6):580–7.

    CAS  PubMed  Google Scholar 

  14. 14.

    Cenac N, Cellars L, Steinhoff M, Andrade-Gordon P, Hollenberg MD, Wallace JL, et al. Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune response. Inflamm Bowel Dis. 2005;11(9):792–8.

    PubMed  Google Scholar 

  15. 15.

    Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, et al. Regulation of intestinal permeability: the role of proteases. World J Gastroenterol. 2017;23(12):2106–23.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kahn M, Ishii K, Kuo WL, Piper M, Connolly A, Shi YP, et al. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster. Mol Med. 1996;2(3):349–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Schmidt VA, Nierman WC, Maglott DR, Cupit LD, Moskowitz KA, Wainer JA, et al. The human proteinase-activated receptor-3 (PAR-3) gene. Identification within a Par gene cluster and characterization in vascular endothelial cells and platelets. J Biol Chem. 1998;273(24):15061–8.

    CAS  PubMed  Google Scholar 

  18. 18.

    Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, et al. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA. 1998;95(12):6642–6.

    CAS  PubMed  Google Scholar 

  19. 19.

    Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-activated receptors in the intestine: focus on inflammation and cancer. Front Endocrinol (Lausanne). 2019;10:717.

    Google Scholar 

  20. 20.

    Dugina TN, Kiseleva EV, Chistov IV, Umarova BA, Strukova SM. Receptors of the PAR family as a link between blood coagulation and inflammation. Biochemistry (Mosc). 2002;67(1):65–74.

    CAS  Google Scholar 

  21. 21.

    Vergnolle N. Clinical relevance of proteinase activated receptors (pars) in the gut. Gut. 2005;54(6):867–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pontarollo G, Mann A, Brandão I, Malinarich F, Schöpf M, Reinhardt C. Protease-activated receptor signaling in intestinal permeability regulation. FEBS J. 2020;287(4):645–58.

    CAS  PubMed  Google Scholar 

  23. 23.

    Vergnolle N. Proteinase-activated receptors (PARs) in infection and inflammation in the gut. Int J Biochem Cell Biol. 2008;40(6–7):1219–27.

    CAS  PubMed  Google Scholar 

  24. 24.

    Hansen KK, Sherman PM, Cellars L, Andrade-Gordon P, Pan Z, Baruch A, et al. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc Natl Acad Sci USA. 2005;102(23):8363–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci USA. 2005;102(1):216–20.

    CAS  PubMed  Google Scholar 

  26. 26.

    Nguyen C, Coelho AM, Grady E, Compton SJ, Wallace JL, Hollenberg MD, et al. Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Can J Physiol Pharmacol. 2003;81(9):920–7.

    CAS  PubMed  Google Scholar 

  27. 27.

    Yoshida N, Takagi T, Isozaki Y, Suzuki T, Ichikawa H, Yoshikawa T. Proinflammatory role of protease-activated receptor-2 in intestinal ischemia/reperfusion injury in rats. Mol Med Rep. 2011;4(1):81–6.

    CAS  PubMed  Google Scholar 

  28. 28.

    Zhao JH, Dong L, Shi HT, Wang ZY, Shi HY, Ding H. The expression of protease-activated receptor 2 and 4 in the colon of irritable bowel syndrome patients. Dig Dis Sci. 2012;57(1):58–64.

    CAS  PubMed  Google Scholar 

  29. 29.

    Watanabe T, Fujiwara Y, Chan FKL. Current knowledge on non-steroidal anti-inflammatory drug-induced small-bowel damage: a comprehensive review. J Gastroenterol. 2020;55(5):481–95.

    CAS  PubMed  Google Scholar 

  30. 30.

    Sostres C, Gargallo CJ, Lanas A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res Ther. 2013;15(Suppl 3):S3.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Niikura R, Yamada A, Maki K, Nakamura M, Watabe H, Fujishiro M, et al. Associations between drugs and small-bowel mucosal bleeding: multicenter capsule-endoscopy study. Dig Endosc. 2018;30(1):79–89.

    PubMed  Google Scholar 

  32. 32.

    Lanas A, Goldstein JL, Chan FK, Wilcox CM, Peura DA, Li C, et al. Risk factors associated with a decrease ≥ 2 g/dL in haemoglobin and/or ≥ 10% haematocrit in osteoarthritis patients taking celecoxib or an on selective NSAID plus a PPI in a large randomised controlled trial (CONDOR). Aliment Pharmacol Ther. 2012;36(5):485–92.

    CAS  PubMed  Google Scholar 

  33. 33.

    Watanabe T, Tanigawa T, Nadatani Y, Nagami Y, Sugimori S, Okazaki H, et al. Risk factors for severe nonsteroidal anti-inflammatory drug-induced small intestinal damage. Dig Liver Dis. 2013;45(5):390–5.

    CAS  PubMed  Google Scholar 

  34. 34.

    Fornai M, Antonioli L, Colucci R, Pellegrini C, Giustarini G, Testai L, et al. NSAID-induced enteropathy: are the currently available selective COX-2 inhibitors all the same? J Pharmacol Exp Ther. 2014;348(1):86–95.

    PubMed  Google Scholar 

  35. 35.

    Fornai M, Antonioli L, Pellegrini C, Colucci R, Sacco D, Tirotta E, et al. Small bowel protection against NSAID-injury in rats: effect of rifaximin, a poorly absorbed, GI targeted, antibiotic. Pharmacol Res. 2016;104:186–96.

    CAS  PubMed  Google Scholar 

  36. 36.

    Antonioli L, Fornai M, Colucci R, Awwad O, Ghisu N, Tuccori M, et al. The blockade of adenosine deaminase ameliorates chronic experimental colitis through the recruitment of adenosine A2A and A3 receptors. J Pharmacol Exp Ther. 2010;335(2):434–42.

    CAS  PubMed  Google Scholar 

  37. 37.

    Fornai M, Pellegrini C, Benvenuti L, Tirotta E, Gentile D, Natale G, et al. Protective effects of the combination Bifidobacterium longum plus lactoferrin against NSAID-induced enteropathy. Nutrition. 2020;70:110583.

    CAS  PubMed  Google Scholar 

  38. 38.

    Colucci R, Pellegrini C, Fornai M, Tirotta E, Antonioli L, Renzulli C, et al. Pathophysiology of NSAID-associated intestinal lesions in the rat: luminal bacteria and mucosal inflammation as targets for prevention. Front Pharmacol. 2018;9:1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Fornai M, Colucci R, Antonioli L, Awwad O, Ugolini C, Tuccori M, et al. Effects of esomeprazole on healing of nonsteroidal anti-inflammatory drug (NSAID)-induced gastric ulcers in the presence of a continued NSAID treatment: characterization of molecular mechanisms. Pharmacol Res. 2011;63(1):59–67.

    CAS  PubMed  Google Scholar 

  40. 40.

    Bonnart C, Feuillet G, Vasseur V, Cenac N, Vergnolle N, Blanchard N. Protease-activated receptor 2 contributes to Toxoplasma gondii-mediated gut inflammation. Parasite Immunol. 2017;39(11):e12489.

    Google Scholar 

  41. 41.

    Lohman RJ, Cotterell AJ, Suen J, Liu L, Do AT, Vesey DA, et al. Antagonism of protease-activated receptor 2 protects against experimental colitis. J Pharmacol Exp Ther. 2012;340(2):256–65.

    CAS  PubMed  Google Scholar 

  42. 42.

    Saeed MA, Ng GZ, Däbritz J, Wagner J, Judd L, Han JX, et al. Protease-activated receptor 1 plays a proinflammatory role in colitis by promoting Th17-related immunity. Inflamm Bowel Dis. 2017;23(4):593–602.

    PubMed  Google Scholar 

  43. 43.

    Bjarnason I, Zanelli G, Prouse P, Smethurst P, Smith T, Levi S, et al. Blood and protein loss via small-intestinal inflammation induced by non-steroidal anti-inflammatory drugs. Lancet. 1987;2(8561):711–4.

    CAS  PubMed  Google Scholar 

  44. 44.

    Bjarnason I, Hayllar J, Smethurst P, Price A, Gumpel MJ. Metronidazole reduces intestinal inflammation and blood loss in non-steroidal anti-inflammatory drug induced enteropathy. Gut. 1992;33(9):1204–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Chami B, Martin NJJ, Dennis JM, Witting PK. Myeloperoxidase in the inflamed colon: a novel target for treating inflammatory bowel disease. Arch Biochem Biophys. 2018;645:61–71.

    CAS  PubMed  Google Scholar 

  46. 46.

    Manceau H, Chicha-Cattoir V, Puy H, Peoc'h K. Fecal calprotectin in inflammatory bowel diseases: update and perspectives. Clin Chem Lab Med. 2017;55(4):474–83.

    CAS  PubMed  Google Scholar 

  47. 47.

    Ryu DG, Kim HW, Park SB, Kang DH, Choi CW, Kim SJ, et al. Clinical implications of fecal calprotectin and fecal immunochemical test on mucosal status in patients with ulcerative colitis. Medicine (Baltimore). 2019;98(36):e17080.

    CAS  Google Scholar 

  48. 48.

    Ricciuto A, Griffiths AM. Clinical value of fecal calprotectin. Crit Rev Clin Lab Sci. 2019;56(5):307–20.

    CAS  PubMed  Google Scholar 

  49. 49.

    Rendek Z, Falk M, Grodzinsky E, Wahlin K, Kechagias S, Svernlöv R, et al. Effect of oral diclofenac intake on faecal calprotectin. Scand J Gastroenterol. 2016;51(1):28–322.

    CAS  PubMed  Google Scholar 

  50. 50.

    Kuramoto T, Umegaki E, Nouda S, Narabayashi K, Kojima Y, Yoda Y, et al. Preventive effect of irsogladine or omeprazole on non-steroidal anti-inflammatory drug-induced esophagitis, peptic ulcers, and small intestinal lesions in humans, a prospective randomized controlled study. BMC Gastroenterol. 2013;13:85.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Fukui A, Naito Y, Handa O, Kugai M, Tsuji T, Yoriki H, et al. Acetyl salicylic acid induces damage to intestinal epithelial cells by oxidation-related modifications of ZO-1. Am J Physiol Gastrointest Liver Physiol. 2012;303(8):G927–G936936.

    CAS  PubMed  Google Scholar 

  52. 52.

    Lai Y, Zhong W, Yu T, Xia ZS, Li JY, Ouyang H, et al. Rebamipide promotes the regeneration of aspirin-induced small-intestine mucosal injury through accumulation of β-catenin. PLoS ONE. 2015;10(7):e0132031.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Arisan ED, Ergül Z, Bozdağ G, Rencüzoğulları Ö, Çoker-Gürkan A, Obakan-Yerlikaya P, et al. Diclofenac induced apoptosis via altering PI3K/Akt/MAPK signaling axis in HCT 116 more efficiently compared to SW480 colon cancer cells. Mol Biol Rep. 2018;45(6):2175–84.

    CAS  PubMed  Google Scholar 

  54. 54.

    Vyas D, Robertson CM, Stromberg PE, Martin JR, Dunne WM, Houchen CW, et al. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine. Histol Histopathol. 2007;22(6):623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Li S, Guan J, Ge M, Huang P, Lin Y, Gan X. Intestinal mucosal injury induced by tryptase-activated protease-activated receptor 2 requires β-arrestin-2 in vitro. Mol Med Rep. 2015;12(5):7181–7.

    CAS  PubMed  Google Scholar 

  56. 56.

    de Garavilla L, Vergnolle N, Young SH, Ennes H, Steinhoff M, Ossovskaya VS, et al. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br J Pharmacol. 2001;133(7):975–87.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Gardell LR, Ma JN, Seitzberg JG, Knapp AE, Schiffer HH, Tabatabaei A, et al. Identification and characterization of novel small-molecule protease-activated receptor 2 agonists. J Pharmacol Exp Ther. 2008;327(3):799–808.

    CAS  PubMed  Google Scholar 

  58. 58.

    El Eter EA, Aldrees A. Inhibition of proinflammatory cytokines by SCH79797, a selective protease-activated receptor 1 antagonist, protects rat kidney against ischemia-reperfusion injury. Shock. 2012;37(6):639–44.

    PubMed  Google Scholar 

  59. 59.

    Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, et al. Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther. 2006;316(3):1017–24.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study received funding from the BMS/Pfizer European Thrombosis Investigator Initiated Research Program (ERISTA). Award number: 2014-API-0020. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

Author information

Affiliations

Authors

Contributions

MF: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing—original draft, Writing—review and editing; RC: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Writing—review and editing; CP: Data curation, Formal analysis, Methodology, Software; LB: Data curation, Formal analysis, Methodology, Software; GN: Conceptualization, Data curation, Resources, Writing—review and editing; LR: Conceptualization, Resources, Visualization; CB: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Writing—review and editing; LA: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing—original draft, Writing—review and editing.

Corresponding author

Correspondence to Matteo Fornai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPT 3361 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fornai, M., Colucci, R., Pellegrini, C. et al. Role of proteinase-activated receptors 1 and 2 in nonsteroidal anti-inflammatory drug enteropathy. Pharmacol. Rep (2020). https://doi.org/10.1007/s43440-020-00119-w

Download citation

Keywords

  • Nonsteroidal anti-inflammatory drugs (NSAIDs)
  • Enteropathy
  • Proteinase-activated receptors (PAR)
  • Fecal calprotectin
  • Intestinal epithelial barrier
  • Intestinal inflammation