Channel current analysis of GaN HEMTs with source sense pin in DC/DC boost converters

Abstract

The breakdown strength and electron mobility of gallium nitride (GaN) are almost ten and three times higher than those of the silicon devices. Wide band-gap devices have a higher thermal conductivity, higher switching frequency capability, lower on-state resistance and lower power dissipation. Detailed analytical models in the electrical network and channel current variations of these devices during switching intervals are still under investigation. The energy loss and heat dissipation on a power converter can be precisely estimated if the operational modes and the corresponding mathematical models of the device are accurately obtained. Depending on the instantaneous values of the channel current and voltage drops on the components computed from the model, the power dissipation and thermal response can be examined. Prediction of the switching losses of a GaN high electron mobility transistor (HEMT) with a source sense pin can be performed using the instantaneous variation of channel current. In this paper, a detailed analytical model including the stray inductances and parasitic capacitors is derived to obtain the channel current of GaN HEMTs with a source sense pin. The turn-on and turn-off transient energy losses during the switching of a single GaN HEMT device can be computed from the analytical model proposed in this paper using the channel current and drain-source voltage. Results of the derived analytical model, SPICE simulations and experimental work on the DC/DC boost converter are compared.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

source voltage: a curves from a datasheet; b interpolation of MATLAB

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Mei, L., Trillion, Q.Z., Yan, L.: An improved analytical model for predicting the switching performance of SiC MOSFETs. J. Power Electron. 16(1), 374–387 (2016)

    Article  Google Scholar 

  2. 2.

    Millan, J., Godignon, P., Perpi, X.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155–2163 (2014)

    Article  Google Scholar 

  3. 3.

    Baliga, B.J.: Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. (2013). https://doi.org/10.1088/0268-1242/28/7/074011

    Article  Google Scholar 

  4. 4.

    Wang, B., Dong, S., Jiang, S., He, C., Hu, J., Ye, H., Ding, X.: A comparative study on the switching performance of GaN and Si power devices for bipolar complementary modulated converter legs. Energies 12(6), 1–13 (2019)

    Google Scholar 

  5. 5.

    Hou, R., Shen, Y., Zhao, H., Hu, H., Lu, J., Long, T.: Power loss characterization and modeling for GaN-based hard-switching half-bridges considering dynamic on-state resistance. IEEE Trans. Transp. Electrif. 6(2), 540–553 (2020)

    Article  Google Scholar 

  6. 6.

    Turan Azizoğlu B., Balıkcı A., Durbaba E, Akpınar E., Kocamış A. E. : Comparing the Efficiency of Cascode GaN and Enhancement GaN in Boost Converter of PV System, IEEE 14 th International Conference on Compatibility, Power Electronics and Power Engineering online conference, 340–345, July (2020), Portugal

  7. 7.

    Wang B., Dong S., Jiang S., He C., Hu J., Ye H. and Ding X. “A Comparative Study on the Switching Performance of GaN and Si Power Devices for Bipolar Complementary Modulated Converter Legs” Energies (2019) https://doi.org/10.3390/en12061146

  8. 8.

    Danijel, D., Manić, I., Davidović, V., Djorić, V.S., Golubović, S., Stojadinović, N.: Negative bias temperature instability in n-channel power VDMOSFETs. Microelectron. Reliab. 48, 1313–1317 (2008)

    Article  Google Scholar 

  9. 9.

    Ninoslav, S., Danković, V., Manić, I.,Davidović, V., Djorić, V.S., and Golubović, S.,: Impact of negative bias temperature instabilities on lifetime in p-channel power VDMOSFETs. Proc. 8th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS '07), Niš (Serbia), September 2007, 275–282. Invited Manuscript.

  10. 10.

    Hakim T.C., Tahanout, M., Boubaaya, S.,Merah, M.: Experimental Investigation of NBTI Degradation in Power VDMOS Transistors under Low Magnetic Field. IEEE Trans. Device Mater. Reliab. (99):1–1, https://doi.org/10.1109/TDMR.2017.2666260, 2017.

  11. 11.

    Boutros, K. S., Chu, R., and Hughes. B.: GaN Power Electronics for Automotive Applications. in Proc. 2012 Energytech, Cleveland, USD, 2012

  12. 12.

    Chen, K. J., Häberlen, O., Lidow, A, Tsai, C. L., Ueda, T., Y. Uemoto and Y. Wu, GaN-on-Si Power Technology: Devices and Applications IEEE Trans. Power Electron Devices, 64(3), 779–795 (2017)

  13. 13.

    Wang J., Shu-hung Chung H., Tin-ho Li R.: Characterization and Experimental Assessment of the Effects of Parasitic Elements on the MOSFET Switching

  14. 14.

    Performance, IEEE Trans. on Power Electron. 28 (1), 573–590 (2013)

  15. 15.

    Miguel, R., Alberto, R., Pablo, F., Diego, G.L., Javier, S.: An insight into the switching process of power MOSFETs: an improved analytical losses model. IEEE Trans. Power Electron 25(6), 1626–1640 (2010)

    Article  Google Scholar 

  16. 16.

    Xu, M., Zhou, J., Lee, F.C.: Analytical loss model of power MOSFET. IEEE Trans. on Power Electron. 21(2), 310–319 (2006)

    Article  Google Scholar 

  17. 17.

    Turan, A.B., Karaca, H.: Investigating a MOSFET driver (Buffer) circuit transition ringings using an analytical model. IEEE Trans. Power Electron. 30(9), 5058–5066 (2015)

    Article  Google Scholar 

  18. 18.

    Jones E. A., Zhang Z., Wang F.: Analysis of the dv/dt Transient of Enhancement-Mode GaN FETs. 2017 IEEE Applied Power Electron. Conf. and Exposition, Tampa, USA, 2470–6647, 26–30 March 2017

  19. 19.

    Liu, Y., Song, Z., Yin, S., Peng, J., Jiang, H.: Analytical and experimental validation of parasitic components influence in SiC MOSFET three-phase grid-connected inverter. J. Power Electron. 19(2), 591–601 (2019)

    Google Scholar 

  20. 20.

    Letellier, A., Dubois, M.R., Trovão, J.P.F., Maher, H.: Calculation of printed circuit board power-loop stray inductance in GaN or high di/dt applications. IEEE Trans. Power Electron. 34(1), 612–623 (2019)

    Article  Google Scholar 

  21. 21.

    Han, D., Sarlioglu, B.: Dead-time effect on GaN-based synchronous boost converter and analytical model for optimal dead-time selection. IEEE Trans. Power Electron. 31(1), 601–612 (2015)

    Article  Google Scholar 

  22. 22.

    Xie, R., Wang, H., Tang, G., Yang, X., Chen, K.J.: An analytical model for false turn-on evaluation of high-voltage enhancement-mode GaN transistor in bridge-leg configuration. IEEE Trans. Power Electron. 32(8), 6416–6433 (2017)

    Article  Google Scholar 

  23. 23.

    Lu J. L. and Chen D, “Paralleling GaN E-HEMTs in 10kW–100kW systems”. Proc. 2017 IEEE Applied Power Electron. Conf. and Exposition, USA, 3049–3056, (2017)

  24. 24.

    Wang, K., Yang, X., Li, H., Ma, H., Zeng, X., Chen, W.: An analytical switching process model of low-voltage eGaN HEMTs for loss calculation. IEEE Trans. Power Electron. 31(1), 635–647 (2016)

    Article  Google Scholar 

  25. 25.

    Christen, D., Biela, J.: Analytical switching loss modelling based on datasheet parameters for MOSFETs in a half-bridge. IEEE Trans. Power Electron. 34(4), 3700–3710 (2019)

    Article  Google Scholar 

  26. 26.

    650V Enhancement Mode GaN Transistor, [Online]. Available:https://gansystems.com/gantransistors/gs66508b

  27. 27.

    Bahl S. R., Ruiz D. and Lee D. S.: Product-level Reliability of GaN Devices, EEE International Reliability Physics Symposium, (2016)

  28. 28.

    Lui X. S.: Methodology for EMC Analysis in a GaN Based Power Module. Ph.D. dissertation, Dept. Electrical, Optical, Bio-physics and Engineering (EOBE), University of Paris-Saclay, Paris, France, (2018)

  29. 29.

    Liu, Q.Z., Lau, S.S.: A review of the metal–GaNcontact technology. Solid-State Electron. 42(5), 677–691 (1998)

    Article  Google Scholar 

  30. 30.

    GS66508B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet. [Online]. https://gansystems.com/wpcontent/uploads/2018/07/GS66508B-DS-Rev-180709.pdf.

  31. 31.

    Teledyne LeCroy, Passive Probe Ground Lead Effects. [Online]. https://teledynelecroy.com/doc/passive-probe-ground-lead-effects.

  32. 32.

    Lidow A., Strydom J., Rooj M. D., and Reusch D.: Modeling and Measurement of GaN Transistors. GaN Transistors for efficient power conversion, 2nd ed. West Sussex, UK, Wiley, (2015)

  33. 33.

    Jian, C., Quanming, L., Jian, H., Qingqing, H., Xiong, D.: A complete switching analytical model of low-voltage eGaN HEMTs and its application in loss analysis. IEEE Trans. Ind. Electron. 67(2), 1615–1625 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Turkish Scientific Research Council (TÜBİTAK) for founding this research at the Department of Electrical and Electronics Engineering at Dokuz Eylul University under the contract of research project no: 117E776 (Design and modelling of a high energy efficient solar energy conversion system).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Buket Turan Azizoglu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azizoglu, B.T., Balikci, A., Akpinar, E. et al. Channel current analysis of GaN HEMTs with source sense pin in DC/DC boost converters. J. Power Electron. (2021). https://doi.org/10.1007/s43236-020-00215-3

Download citation

Keywords

  • Gallium nitride (GaN)
  • Channel current
  • Switching loss
  • Analytical model