Equivalent hysteresis model based SOC estimation with variable parameters considering temperature

Abstract

Estimation of the state of charge (SOC) of a lithium-ion battery is one of the key technologies in battery management systems. The accuracy of SOC estimation mainly depends on the accuracy of the battery model. The traditional Thevenin model has limited application due to its fixed parameters. In addition, its accuracy is not high. This paper proposes a variable parameter equivalent hysteresis model based on the Thevenin model. The parameters of this model are regarded as variables that vary with temperature and SOC. They can be identified by hybrid pulse power characteristic (HPPC) experiments. In addition, the model also considers the hysteresis characteristics of the open circuit voltage (OCV) and uses a mathematical recursive equation to describe it. Experimental and simulation results show that the proposed model has a higher accuracy and a wider application than the Thevenin model. On the basis of this model, SOC estimation is carried out based on modified covariance extended Kalman filter (MVEKF) at different temperatures. The results show that the SOC estimation accuracy of the MVEKF method is significantly higher than that of an extended Kalman filter (EKF).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Cheng, M., Tong, M.H.: Development status and trend of electric vehicles in China. Chin. J. Electr. Eng. 3(2), 1–13 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Liu, K.L., Kang, L.I., Peng, Q., Zhang, C.: A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 14(1), 47–64 (2018)

    Article  Google Scholar 

  3. 3.

    Wang, Y.S., Yang, S.Z., You, Y.: High-capacity and long-cycle life aqueous rechargeable lithium-ion battery with the FePO4 anode. ACS Appl. Mater. Interfaces. 10(8), 7061–7068 (2018)

    Article  Google Scholar 

  4. 4.

    Jiao, X.X., Liu, Y.Y., Li, B., Zhang, W.X.: Amorphous phosphorus-carbon nanotube hybrid anode with ultralong cycle life and high-rate capability for lithium-ion battery. Carbon 148, 518–524 (2019)

    Article  Google Scholar 

  5. 5.

    Yang, F.F., Xing, Y.J., Wang, D.: A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile. Appl. Energy 164, 387–399 (2016)

    Article  Google Scholar 

  6. 6.

    He, Y., Zhang, C.B., Liu, X.T., Chen, Z.H.: SOC estimation for LiFePO4 high-power batteries based on information fusion. Control Decision 29(01), 188–192 (2014)

    Google Scholar 

  7. 7.

    Deng, Z.W., Hu, X.S., Lin, X.K., Che, Y.H., Guo, W.C.: Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. Energy 205, 118000 (2020)

    Article  Google Scholar 

  8. 8.

    Zhang, X., Wang, X., Zhang, W., Lei, G.: A simplified li-ion battery SOC estimating method. Trans. Electr. Electron. Mater. 17(1), 13–17 (2016)

    Article  Google Scholar 

  9. 9.

    Eziani, S., Ouassaid, M.:State of charge estimation of supercapacitor using artificial neural network for onboard railway applications. In: International Renewable and Sustainable Energy Conference (IRSEC). (2019)

  10. 10.

    Misyris, G.S., Doukas, D.I., Papadopoulos, T.A.: State-of-charge estimation for li-ion batteries: a more accurate hybrid approach. IEEE Trans. Energy. Convers. 34(1), 109–119 (2019)

    Article  Google Scholar 

  11. 11.

    Xi, Z.M., Dahmardeh, M., Xia, B.: Learning of battery model bias for effective state of charge estimation of lithium-ion batteries. IEEE Trans. Veh. Technol. 68(9), 8613–8628 (2019)

    Article  Google Scholar 

  12. 12.

    Li, Y., Xiong, B. Y., Vilathgamuwa, D. M., Wei, Z. B., Zou, C. F.: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries. IEEE Trans. Ind. Informat. PP(99) (2020)

  13. 13.

    Sturm, J., Ennifar, H., Erhard, S.V., Rheinfeld, A., Kosch, S., Jossen, A.: State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter. Appl. Energy 223, 103–123 (2018)

    Article  Google Scholar 

  14. 14.

    Susanna, S., Dewangga, B. R., Wahyungoro, O., Cahyadi, A. I.: Comparison of simple battery model and thevenin battery model for SOC estimation based on OCV method. In: International Conference on Information and Communications Technology (ICOIACT), pp. 738–743 (2019)

  15. 15.

    Liu, D., Wang, X. C., Zhang, M., Gong, M. X.: SOC estimation of lithium battery based on N-2RC model in electric vehicle. In: Chinese Control And Decision Conference (CCDC), pp. 2916–2921 (2019)

  16. 16.

    Du, J., Wang, Y. Y., Wen, C. Y.: Li-ion battery SOC estimation using particle filter based on an equivalent circuit model. In: IEEE International Conference on Control and Automation (IEEE ICCA), pp. 580–585 (2013)

  17. 17.

    Zhang, L., Wang, S.L., Stroe, D.I., Zou, C.Y., Fernandez, C.: An accurate time constant parameter determination method for the varying condition equivalent circuit model of lithium batteries. Energies 13(8), 2057 (2020)

    Article  Google Scholar 

  18. 18.

    Luo, M.J., Guo, Y.Z., Kang, J.Q., She, L.Y.: Ternary-material lithium-ion battery SOC estimation under various ambient temperature. Ionics 24(7), 1907–1917 (2018)

    Article  Google Scholar 

  19. 19.

    Zhu, J.G., Knapp, M., Darma, M.S.D., Fang, Q.H., Wang, X.Y.: An improved electro-thermal battery model complemented by current dependent para-meters for vehicular low temperature application. Appl. Energy 248, 149–161 (2019)

    Article  Google Scholar 

  20. 20.

    He, Y., Cao, C.Y., Liu, X.T., Zheng, X.X., Zeng, G.J.: SOC estimation of lithium battery based on variable temperature model. Electr. Machines Control 22(01), 43–52 (2018)

    Google Scholar 

  21. 21.

    Liu, X.T., Li, H., He, Y., Zheng, X.X., Zeng, G.J.: SOC estimation method based on IUPF algorithm and variable para-meter battery model. J. Southeast Univ. (Natural Science Edition) 48(01), 54–62 (2018)

    Google Scholar 

  22. 22.

    Li, Y.W., Wang, C., Gong, J.F.: A wavelet transform-adaptive unscented Kalman filter approach for state of charge estimation of LiFePo4 battery. Int. J. Energy Res. 42(2), 587–600 (2018)

    Article  Google Scholar 

  23. 23.

    Chin, C.S., Gao, Z.C., Chiew, J.H.K., Zhang, C.Z.: Nonlinear temperature-dependent state model of cylindrical LiFePO4 battery for open-circuit voltage, terminal voltage and state-of-charge estimation with extended Kalman filter. Energies 11(9), 2467 (2018)

    Article  Google Scholar 

  24. 24.

    Tan, X. J.: Design of electric vehicle power battery management system. Sun Yatsen University press (2011)

  25. 25.

    Deng, Z.W., Yang, L., Cai, Y.S., Deng, H., Sun, L.: Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery. Energy 112, 469–480 (2016)

    Article  Google Scholar 

  26. 26.

    National Automobile Standardization Technical Committee.: QC/T743—2006 Lithium ion batteries for electric vehicles. Beijing: Standards Press of China (2006)

  27. 27.

    Liu, X.T., He, Y., Zeng, G.J., Zhang, J.F., Zheng, X.X.: A method for state-of-power estimation of li-ion battery considering battery surface temperature. Energy Technol. 6(7), 1352–1360 (2018)

    Article  Google Scholar 

  28. 28.

    Liu, X.T., Chen, Z.H., Zhang, C.B., He, Y.: A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation. Appl. Energy 123, 263–272 (2014)

    Article  Google Scholar 

  29. 29.

    Zhang, R.F., Xia, B.Z., Li, B.H., Cao, L.B., Lai, Y.Z., Zheng, W.W.: A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature. Energies 11(9), 2408 (2018)

    Article  Google Scholar 

  30. 30.

    Chen, Y.J., Yang, G., Liu, X., He, Z.C.: A time-efficient and accurate open circuit voltage estimation method for lithium-ion batteries. Energies 12(9), 1803 (2019)

    Article  Google Scholar 

  31. 31.

    Heo, S., Park, C.G.: Consistent EKF-based visual-inertial odometry on matrix lie group. IEEE Sens. 18(9), 3780–3788 (2018)

    Article  Google Scholar 

  32. 32.

    Xie, J.L., Ma, J.C., Chen, J.: Peukert-equation-based state-of-charge estimation for LiFePO4 batteries considering the battery thermal evolution effect. Energies 11(5), 1112 (2018)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, Q., Zheng, X. et al. Equivalent hysteresis model based SOC estimation with variable parameters considering temperature. J. Power Electron. 21, 590–602 (2021). https://doi.org/10.1007/s43236-020-00213-5

Download citation

Keywords

  • Hysteresis characteristic
  • Variable parameter
  • Equivalent circuit model
  • State of charge
  • Modified covariance extended kalman filter (MVEKF)