Multi-loop current control strategy based on predictive control for multiphase pulse power supplies


For high-power quasi-continuous laser drivers, the switched pulse power supply (PPS) is a promising technique due to its higher efficiency when compared with linear drivers. However, there are some digital control challenges with high precision, fast response and zero overshoot during the flat-top current stage. To promote the use of a switched PPS, this paper proposes a digital control strategy based on predictive current control under a multiphase PPS converter circuit. The key of the proposed control strategy is that predictive inner current control is only used for the master phase circuit. Meanwhile, the current sharing control is used for balancing the phase currents, and the setting outer current controller is used for keeping the whole converter control system stable and robust. Furthermore, to obtain fast and precise current tracking, a predictive average current control independent from the load values is derived. Moreover, a reducing gain method is applied to guarantee the stability of the inner current control. When compared with the conventional multiphase control, the proposed strategy possesses a faster dynamic response and a higher accuracy. In addition, it is more flexible under digital control implementation. A 360 W dual-interleaved PPS prototype is utilized for verifying the effectiveness of the proposed control strategy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Geng, A.: Solid State Laser and Its Application. National defense industry press, Beijing (2014)

    Google Scholar 

  2. 2.

    Wölz, M., Pietrzak, A., Kindsvater, A., Meusel, J., Stolberg, K., Hülsewede, R., Sebastian, J., Loyo, V.: Laser diode stacks:pulsed light power for nuclear fusion. High Power Laser Sci. Eng. 2, 29–36 (2016)

    Google Scholar 

  3. 3.

    Platz, R., Eppich, B., Rieprich, J., Pittroff, W., Erbert, G., Crump, P.: High duty cycle, highly efficient fiber coupled 940-nm pump module for high-energy solid-state lasers. High Power Laser Sci. Eng. 1, 17–21 (2016)

    Google Scholar 

  4. 4.

    Platz R., Frevert C., Eppich B., Rieprich J., Ginolas A., Kreutzmann S., Knigge S., Erbert G., Crump P.: Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers. In: Proc. SPIE 10513, Components and Packaging for Laser Systems IV. (2018)

  5. 5.

    Du, H.: A novel laser diode driver. Appl. Laser. 30(3), 214–218 (2010)

    Article  Google Scholar 

  6. 6.

    Zhou, W., Jin, K.: Efficiency evaluation of laser diode in different driving modes for wireless power transmission. IEEE Trans. Power Electron. 30(11), 6237–6244 (2015)

    Article  Google Scholar 

  7. 7.

    Yao, W., Ji, Y.: Design of high-performance driving power supply for high-power DPSSL. Mach. Electron. 5, 15–18 (2010)

    Google Scholar 

  8. 8.

    Penovi, E., Retegui, R.G., Maestri, S., Uicich, G., Benedetti, M.: Multistructure power converter with h-bridge series regulator suitable for high-current high-precision-pulsed current source. IEEE Trans. Power Electron. 30(12), 6534–6542 (2014)

    Article  Google Scholar 

  9. 9.

    Wang, Z., Ma, X., Wang, C., Guo, F.: Study on the power supply of semiconductor laser with two-phase double chopper transformation. Laser Technol. 39(3), 386–390 (2015)

    Google Scholar 

  10. 10.

    Tsuda S., Tamida T., Hashimoto T., Morimoto T.: Power supply apparatus for driving laser diode provided with power supply for supplying power to laser oscillator. U.S. Patent 20180097336A1[P]. (2018)

  11. 11.

    Yuan, Z., Xu, H.: Pulse power supply with faster response and low ripple current using inductive storage and interleaving technology. CPSS Trans. Power Electron. Appl. 5(1), 54–62 (2020)

    Article  Google Scholar 

  12. 12.

    Li, M., Tse, C.K., Ma, X.: Calculation of steady-state solution of parallel-connected buck converters with active current sharing and its parameter sensitivity. Int. J. Circuit Theory Appl. 39(3), 275–297 (2011)

    Article  Google Scholar 

  13. 13.

    Mao, H., Yao, L., Wang, C., Batarseh, I.: Analysis of inductor current sharing in nonisolated and isolated multiphase dc–dc converters. IEEE Trans. Ind. Electron. 54(6), 3379–3388 (2007)

    Article  Google Scholar 

  14. 14.

    Chen, H., Lu, C., Rout, U.S.: Decoupled master-slave current balancing control for three-phase interleaved Boost converters. IEEE Trans. Power Electron. 33(5), 3683–3687 (2018)

    Article  Google Scholar 

  15. 15.

    Ruffo, R., Cirimele, V., Diana, M., Khalilian, M., Ganga, A.L., Guglielmi, P.: Sensorless control of the charging process of a dynamic inductive power transfer system with an interleaved nine-phase Boost converter. IEEE Trans. Power Electron. 65(10), 7630–7639 (2018)

    Google Scholar 

  16. 16.

    Wassinger, N., Retegui, R.G., Funes, M., Benedetti, M.: Digital control for a multiple-stage pulsed current source. IEEE Trans. Industr. Inf. 9(2), 1122–1129 (2013)

    Article  Google Scholar 

  17. 17.

    Yan, Y., Lee, F.C., Mattavelli, P., Liu, P.: I2 Average Current Mode Control for Switching Converters. IEEE Trans. Power Electron. 29(4), 2027–2036 (2014)

    Article  Google Scholar 

  18. 18.

    Vidal-Idiarte, E., Marcos-Pastor, A., Giral, R., Calvente, J., Martinez-Salamero, L.: Direct digital design of a sliding mode-based control of a PWM synchronous buck converter. IET Power Electron. 10(13), 1714–1720 (2017)

    Article  Google Scholar 

  19. 19.

    Dong-Choon, L.: Lee G-Myoung, Lee Ki-Do: DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization. IEEE Trans. Ind. Appl. 36(3), 826–833 (2000)

    Article  Google Scholar 

  20. 20.

    Cheng, L., Acuna, P., Aguilera, R.P., Jiang, J., Wei, S., Fletcher, J.E., Lu Dylan, D.C.: Model predictive control for DC–DC Boost converters with reduced-prediction horizon and constant switching frequency. IEEE Trans. Power Electron. 33(10), 9064–9075 (2018)

    Article  Google Scholar 

  21. 21.

    Zhang, Y., Zhang, Y.M., Wang, X.: Comparative study on predictive dead-beat peak current, valley current and average current control algorithms for phase-shifted full-bridge DC/DC converters. J. Power Electron. 20(1), 87–99 (2020)

    Article  Google Scholar 

  22. 22.

    Chen, J., Prodic, A., Erickson, R.W., Maksimovic, D.: Predictive digital current programmed control. IEEE Trans. Power Electron. 18(1), 411–419 (2003)

    Article  Google Scholar 

  23. 23.

    Zhou, G., Mao, G., Zhao, H., Zhang, W., Xu, S.: Digital average voltage/digital average current predictive control for switching DC–DC converters. IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 1819–1830 (2018)

    Article  Google Scholar 

  24. 24.

    Fang, W., Liu, X.D., Liu, Y.F.: A digital parallel current-Mode control algorithm for DC–DC converters. IEEE Trans. Industr. Inf. 10(14), 2146–2153 (2014)

    Article  Google Scholar 

  25. 25.

    Erickson Robert W., Maksimovic D.: Fundamentals of power electronics. New York, Boston (2001)

Download references

Author information



Corresponding author

Correspondence to Haiping Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Wen, P., Xu, H. et al. Multi-loop current control strategy based on predictive control for multiphase pulse power supplies. J. Power Electron. 21, 553–562 (2021).

Download citation


  • Multi-loop
  • Digital current control
  • Predictive control
  • Pulse power supply