A novel multi-physics field optimization method for GaN HEMT circuit design


A device modeling and topology design method suitable for high-power-density and high-temperature applicationare important to develop with the development of devices. A novel multi-physics analysis model based on GaN high electron mobility transistor (HEMT) is proposed in this paper. The coupled electromagnetic and electrothermal model for GaN HEMT is beneficial to simulate a device’s external characteristic waveform affected by different stray parameters in the surrounding. In addition, the proposed method can accurately reflect the switching loss and transient switching process of GaN HEMT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Holmes, J., Dutta, M., Koeck, F.A.: A 4.5- μm PIN diamond diode for detecting slow neutrons. Nuclear instruments and methods in physics research section A. Accelerat. Spectrom. Detect. Assoc. Equip. 903, 297–301 (2018)

    Article  Google Scholar 

  2. 2.

    Saremi, M., Hathwar, R., Dutta, M., et al.: Analysis of the reverse I-V characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 111, 4 (2017)

    Article  Google Scholar 

  3. 3.

    Yoshikawa, A., Matsunami, H., Nanishi, Y.: Development and applications of wide bandgap semiconductors. In: Takahashi, K., Yoshikawa, A., Sandhu, A. (eds.) Wide bandgap semiconductors. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  4. 4.

    Shenai, K., Scott, R.S., Baliga, B.J.: Optimumsemiconductors for high-power electronics. IEEE. Transactions. Elect. Dev. 36(9), 1811–1821 (1989)

    Article  Google Scholar 

  5. 5.

    Angelov, I., Bengtsson, L., Garcia, M.: Extensions of the chalmers nonlinear HEMT and MESFET Model. IEEE. Trans. Micr. Theory. Tech. 44(10), 1664–1673 (1996)

    Article  Google Scholar 

  6. 6.

    Statz, H., Newman, P.: GaAs FET device and circuit simulation in spice. IEEE. Trans. Electron. Dev. 34(2), 161–169 (1987)

    Article  Google Scholar 

  7. 7.

    Angus, J.M.C.C.A.M.A.N.T., Gary, D.M.C.C.O.R.M.A.C.K., Smith, D.H.: An Improved GaAs MESFET Model for SPICE. IEEE. Trans. Micr. Theory. Tech. 38(6), 822–824 (1990)

    Article  Google Scholar 

  8. 8.

    Danković, D., Mitrović, N., Prijić, Z., Stojadinović, N.D.: Modeling of NBTS effects in P-channel power VDMOSFETs. IEEE Transactions. Dev. Mater. Reliabil. 20(1), 204–213 (2020)

    Article  Google Scholar 

  9. 9.

    Michael, R., Hontz, Collings, W., Courtay, A., Khanna, R.: An optimization framework for GaN power device design and applications. 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). (2019)

  10. 10.

    Parker, A.E., Skellern, D.J.: A realistic large-signal MESFET model for SPICE. IEEE. Transactions. Micro. Theory. Techn. 45(9), 1563–1571 (1997)

    Article  Google Scholar 

  11. 11.

    Curtice, W.R., Ettenberg, M.: A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE. Transactions. Micro. Theory. Techn. 33(12), 1383–1393 (1985)

    Article  Google Scholar 

  12. 12.

    Sacconi, F., Aldo Di Carlo, P., Lugli: Spontaneousand piezoelectric polarization effectson the output characteristics of AlGaN/GaNheterojunctionmodulation doped FET’. IEEE. Transactions. Electron. Dev. 48(3), 450–457 (2001)

    Article  Google Scholar 

  13. 13.

    Scaldaferri, S., Curatola, G., Iannaccone, G.: Direct solution of the boltzmanntransportequation and poisson-schrödinger equationfor nanoscale MOSFETs. IEEE. Transactions. Elect. Dev. 54(11), 2901–2908 (2007)

    Article  Google Scholar 

  14. 14.

    Blakemore, J.S.: Semiconductor statistics. Pergamon Press Ltd., Oxford (1962)

    Google Scholar 

  15. 15.

    Vorobyov,Y., Avachev, A., Tolkach, N.: An analytical solution for the Fermi level of the non-degenerate semiconductor in thermal equilibrium over a wide temperature range. 2017 6th Mediterranean Conference on Embedded Computing (MECO). (2017)

Download references

Author information



Corresponding author

Correspondence to Rui Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, Y. & Xu, H. A novel multi-physics field optimization method for GaN HEMT circuit design. J. Power Electron. 21, 616–623 (2021). https://doi.org/10.1007/s43236-020-00205-5

Download citation


  • Multi-physics
  • GaN HEMT
  • Equivalent circuit
  • High-frequency circuit