Fault-tolerant analysis of two boost inverters for open-end winding induction motor drives


An open-end winding induction motor drive system fed by two boost inverters with fault-tolerant capability is presented to improve the reliability and safety of the drive system. The boost inverters consist of an impedance-source network and a two-level inverter. It can realize the boost/buck function. An analysis of its fault-tolerance is presented in detail. Short circuits and open circuits are commonly considered as the two main types of faults. Therefore, the fault types of the dual boost inverters are analyzed and diagnosed. Then, two different fault-tolerant schemes are presented. The presented fault-tolerant inverters are restructured through the power switch itself. In addition, different SVPWM methods are addressed. A simulation model and an experimental platform are constructed. Simulation and experimental results verify the fault tolerance of the drive system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Nguyen, L.V., Tran, H.D., Johnson, T.T.: Virtual prototyping for distributed control of a fault-tolerant modular multilevel inverter for photovoltaics. IEEE Trans. Energy Conversion 29(4), 841–850 (2014)

    Article  Google Scholar 

  2. 2.

    Fuchs, F. W.: Some diagnosis methods for voltage source inverters in variable speed drives with induction machines—a survey. In: Proceedings of the IEEE Industrial Electronics Society Annual Conference, pp. 1378–1385 (2003).

  3. 3.

    Lahyani, A., Venet, P., Grellet, G., Viverge, P.J.: Failure prediction of electrolytic capacitors during operation of switchmode power supply. IEEE Trans. Power Electron. 13(6), 1199–1206 (1998)

    Article  Google Scholar 

  4. 4.

    Yu, O. K., Park, N. J., Hyun, D. S.: A novel fault detection scheme for voltage fed PWM inverter. In: Proceedings of the IEEE 32nd Annual Conference on Industrial Electronics, pp 2654–2659 (2006).

  5. 5.

    Pires, F.V., Foito, D., Silva, F.J.: Fault tolerant multilevel topology based on three-Phase H-bridge inverters for open-end winding induction motor drives. IEEE Trans. Energy Conversion 32(3), 895–902 (2017)

    Article  Google Scholar 

  6. 6.

    Rama Chandra Sekhar, K. and Srinivas, S.: Effect of a CMV elimination PWM on stator current ripple in a dual two-level inverter fed induction motor drive. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 395–400 (2012).

  7. 7.

    Li, C.J., Wang, G.F., Li, F., et al.: Fault-tolerant control for 5L-HNPC inverter-fed induction motor drives with finite control set model predictive control based on hierarchical optimization. J. Power Electron. 19(4), 989–999 (2019)

    Google Scholar 

  8. 8.

    Nian, H., Zhou, Y., Zeng, H.: Fault-tolerant control technique of permanent magnet synchronous generator based on open winding configuration. Trans. China Electro-tech. Soc. 30(10), 58–67 (2015)

    Google Scholar 

  9. 9.

    Sekhar, K.R., Srinivas, S.: Torque ripple reduction PWMs for a single DC source powered dual-inverter fed open-end winding induction motor drive. IET Power Electron. 11(1), 43–51 (2018)

    Article  Google Scholar 

  10. 10.

    Mahato, B., Raushan, R., Jana, K.C.: Modulation and control of multilevel inverter for an open-end winding induction motor with constant voltage levels and harmonics. IET Power Electron. 10(1), 71–79 (2017)

    Article  Google Scholar 

  11. 11.

    Somasehar, V.T., Srinivas, S., et al.: Pulse width-modulated Switching strategy for the dynamic balancing of zero-sequence current for a dual-inverter fed open-end winding induction motor drive. IET Electr. Power Appl. 1(4), 591–600 (2007)

    Article  Google Scholar 

  12. 12.

    Somasekhar, V.T., Gopakumar, K., Baiju, M.R., et al.: A multilevel inverter system for an induction motor with open-end windings. IEEE Trans. Ind. Electron. 52(3), 824–836 (2005)

    Article  Google Scholar 

  13. 13.

    Amerise, A., Mengoni, M., Zarri, L., et al.: Open-end windings induction motor drive with a floating capacitor bridge at variable DC link voltage. IEEE Trans. Ind. Appl. 55(3), 2741–2749 (2019)

    Article  Google Scholar 

  14. 14.

    Darijevic, M., Jones, M., Levi, E.: An open-end winding four-level five-phase drive. IEEE Trans. Ind. Electron. 63(1), 538–549 (2016)

    Article  Google Scholar 

  15. 15.

    Rajeevan, P.P., Sivakumar, K., Gopakumar, K., et al.: A nine-level inverter topology for medium voltage induction motor drive with open-end stator winding. IEEE Trans. Ind. Electron. 60(9), 3627–3636 (2013)

    Article  Google Scholar 

  16. 16.

    Stemmler, H., Guggenbach, P.: Configurations of high-power voltage source inverter drives. Eur. Conf. Power Electron. Appl. 5, 7–14 (1993)

    Google Scholar 

  17. 17.

    Lakhimsetty, S., Surulivel, N., Somasekhar, V.: Improvised SVPWM strategies for an enhanced performance for a four-level open-end winding induction motor drive. IEEE Trans. Ind. Electron. 64(4), 2750–2759 (2017)

    Article  Google Scholar 

  18. 18.

    Reddy, B.V., Somasekhar, V.T.: An SVPWM scheme for the suppression of zero-sequence current in a four-level open-end winding induction motor drive with nestedrectifier-inverter. IEEE Trans. Ind. Electron. 63(5), 2803–2812 (2016)

    Article  Google Scholar 

  19. 19.

    Kunisetti, V., Kumar, P., Kumar, T.V.: Predictive torque control of open-end winding induction motor drive fed with multilevel inversion using two two-level inverters. IET Electric Power Appl. 12(1), 54–62 (2018)

    Article  Google Scholar 

  20. 20.

    Srinivasan, P., Narasimharaju, B.L., Rikanth, N.V.: Space-vector pulse width modulation scheme for open-end winding induction motor drive configuration. IET Power Electron. 8(7), 1083–1094 (2015)

    Article  Google Scholar 

  21. 21.

    Zhao, W.X., Zhao, P., Xu, D.Z., et al.: Hybrid modulation fault-tolerant control of open-end windings linear vernier permanent-magnet motor with floating capacitor inverter. IEEE Trans. Power Electron. 34(3), 2563–2572 (2019)

    Article  Google Scholar 

  22. 22.

    Siwakoti, Y.P., Peng, F.Z., Blaabjerg, F., et al.: Impedance-source networks for electric power conversion Part I: A topological review. IEEE Trans. Power Electron. 30(2), 699–716 (2015)

    Article  Google Scholar 

  23. 23.

    Peng, F.Z., Joseph, A., Wang, J., et al.: Z-source inverter for motor drives. IEEE Trans. Power Electron. 20(4), 857–863 (2005)

    Article  Google Scholar 

  24. 24.

    Ayad, A., Hanafiah, S., Kennel, R.: A comparison of quasi-z-source inverter and traditional two-stage inverter for photovoltaic application. In: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe), pp. 1580–1587 (2015).

  25. 25.

    Liu, Y.S., Ge, B.M., Abu-Rub, H., Peng, F.Z.: Overview of space vector modulations for three-phase Z-source/quasi-Z-source inverters. IEEE Trans. Power Electron. 29(4), 2098–2108 (2014)

    Article  Google Scholar 

  26. 26.

    Baranwal, R., Basu, K., Mohan, N.: Dual two level inverter carrier SVPWM with zero common mode voltage. In: IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp 1–6 (2012).

  27. 27.

    Lu, B., Sharma, S.K.: A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl. 45(5), 1770–1777 (2009)

    Article  Google Scholar 

  28. 28.

    Mendes, A. M. S. and Marques Cardoso, A. J.: Voltage source inverter fault diagnosis in variable speed ac drives, by the average current Park’s vector approach. In: IEEE International Electric Machines and Drives Conference, pp 704–706, (1999).

Download references


This work was supported in part by the National Natural Science Foundation of China under Grant 51707085 and Grant 51707086, and by the Natural Science Research Project of Jiangsu Higher Education Institutions of China under Grant 19KJB470020.

Author information



Corresponding author

Correspondence to Guifeng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, G., Li, H. et al. Fault-tolerant analysis of two boost inverters for open-end winding induction motor drives. J. Power Electron. (2021). https://doi.org/10.1007/s43236-020-00201-9

Download citation


  • Dual-boost inverters
  • Fault tolerance
  • Impedance-source network
  • Open-end winding induction motor